Line 18: Line 18:
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
  
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>
+
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>  
 +
 
 +
(<math>\ast</math> implies the convolution)
  
 
Then, find the inverse LTI filter <math>h_2</math> of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,
 
Then, find the inverse LTI filter <math>h_2</math> of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,

Revision as of 19:11, 8 October 2010


Under construction -Jaemin


Quiz Questions Pool for Week 8


Q1. Find the impulse response of the following LTI systems and draw their block diagram.

(assume that the impulse response is causal and zero when $ n<0 $)

$ {\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n] $

$ {\color{White}ab}\text{b)}{\color{White}abc}y[n] = y[n-1] + 0.25(x[n] - x[n-3]) $


Q2. Suppose that the LTI filter $ h_1 $ satifies the following difference equation between input $ x[n] $ and output $ y[n] $.

$ {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] $

($ \ast $ implies the convolution)

Then, find the inverse LTI filter $ h_2 $ of $ h_1 $, which satisfies the following relationship for any discrete-time signal $ x[n] $,

(assume that the impulse responses are causal and zero when $ n<0 $)

$ {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] $


$ \text{Q3.} $


$ \text{Q4.} $


$ \text{Q5.} $


$ \text{Q6.} $


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett