(New page: Category:2010 Fall ECE 438 Boutin ---- From the first question, we knew that <math> -a^{n}u[-n-1] = \mathcal{Z}^{-1}\bigg\{\frac{1}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\!</...)
 
Line 24: Line 24:
 
\,\!</math>
 
\,\!</math>
 
----
 
----
Back to  
+
Back to [[ECE438_Week5_Quiz|Lab Week 5 Quiz Pool]]
  
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
  
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]

Revision as of 13:10, 19 September 2010



From the first question, we knew that

$ -a^{n}u[-n-1] = \mathcal{Z}^{-1}\bigg\{\frac{1}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\! $

And the time-shifting property of Z-transform is defined as

$ x[n-k] = \mathcal{Z}^{-1}\bigg\{z^{-k}X(z)\bigg\} \text{ when } x[n] = \mathcal{Z}^{-1}\bigg\{X(z)\bigg\}\,\! $

Therefore, if we use the time-shifting property of Z-transform, then

$ -a^{n-3}u[-(n-3)-1] = \mathcal{Z}^{-1}\bigg\{\frac{z^{-3}}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\! $

Combined with the result from the linearity of Z-transform, then

$ \begin{align} \mathcal{Z}^{-1}\bigg\{\frac{2z^{-3}}{1-az^{-1}}\bigg\} \text{ for } |z|<|a| &= -2a^{n-3}u[-(n-3)-1], \\ &= -2a^{n-3}u[-n+2] \end{align} \,\! $


Back to Lab Week 5 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach