(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Differentiation ==
 
== Differentiation ==
  
 +
def.
 +
x'(t) = j*w*(j*w)
  
 
x(t) = <math>\int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt</math>
 
x(t) = <math>\int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt</math>
Line 12: Line 14:
 
importance
 
importance
  
replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain.
+
replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain for easier Fourier transform enalysis
 +
 
 +
example
 +
 
 +
x(t)=u(t)
 +
 
 +
<math>X(j*w)=G(j*w)*(1/jw)+\pi*G(0)*\delta(w)</math>
 +
 
 +
<math>X(j*w)=(1/(j*w))+\pi*G(0)*\delta(w)</math>

Latest revision as of 04:45, 9 July 2009

Differentiation

def. x'(t) = j*w*(j*w)

x(t) = $ \int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt $

diffrentiate both sides

x'(t) = d($ \int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt $)

x'(t) = j*w*(j*w)

importance

replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain for easier Fourier transform enalysis

example

x(t)=u(t)

$ X(j*w)=G(j*w)*(1/jw)+\pi*G(0)*\delta(w) $

$ X(j*w)=(1/(j*w))+\pi*G(0)*\delta(w) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva