(New page: <math>x(t)=\sqrt{t}</math> ---- <math> \int_{-\infty}^\infty t,dt </math> <math> E_\infty=lim_{T \to \infty} \int_{-T}^T |x(t)|^2\,dt</math> <math> E_\in...)
 
 
Line 1: Line 1:
 
<math>x(t)=\sqrt{t}</math>
 
<math>x(t)=\sqrt{t}</math>
 
----
 
----
                                <math> \int_{-\infty}^\infty  t,dt </math>
+
                           
  
 
<math> E_\infty=lim_{T \to \infty} \int_{-T}^T |x(t)|^2\,dt</math>
 
<math> E_\infty=lim_{T \to \infty} \int_{-T}^T |x(t)|^2\,dt</math>
Line 9: Line 9:
 
     <math> E\infty= \int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt</math>  
 
     <math> E\infty= \int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt</math>  
 
     <math> E\infty=(\frac{1}{2})*t^2|_{-\infty}^\infty</math>
 
     <math> E\infty=(\frac{1}{2})*t^2|_{-\infty}^\infty</math>
     <math> E\infty=(\frac{1}{2})\infty^2-0^2)=\infty</math>
+
     <math> E\infty=(\frac{1}{2})\infty^2-0^2)=\infty</math> in Joules
  
 
<math> P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
 
<math> P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
Line 16: Line 16:
 
     <math> P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(\frac{1}{2}t^2)|_0^T</math>
 
     <math> P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(\frac{1}{2}t^2)|_0^T</math>
 
     <math> P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(\frac{1}{2}T^2)</math>
 
     <math> P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(\frac{1}{2}T^2)</math>
     <math> P\infty=lim_{T \to \infty} \ \frac{T}{4}=\infty</math>
+
     <math> P\infty=lim_{T \to \infty} \ \frac{T}{4}=\infty</math> in Watts
  
  
 
+
--[[User:Freya|Freya]] 16:44, 21 June 2009 (UTC)
<math>  lim_{T \to \infty} </math>
+
 
+
<math> \int_{-\infty}^\infty  t,dt </math>
+
 
+
 
+
--[[User:Freya|Freya]] 16:28, 21 June 2009 (UTC)
+

Latest revision as of 12:44, 21 June 2009

$ x(t)=\sqrt{t} $



$ E_\infty=lim_{T \to \infty} \int_{-T}^T |x(t)|^2\,dt $

$ E_\infty= \int_{-\infty}^\infty |x(t)|^2\,dt $

   $  E\infty= \int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt $ 
   $  E\infty=(\frac{1}{2})*t^2|_{-\infty}^\infty $
   $  E\infty=(\frac{1}{2})\infty^2-0^2)=\infty $ in Joules

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $  P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T |\sqrt{t}|^2\,dt=\int_0^T t\,dt $
   $  P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(\frac{1}{2}t^2)|_0^T $
   $  P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(\frac{1}{2}T^2) $
   $  P\infty=lim_{T \to \infty} \ \frac{T}{4}=\infty $ in Watts


--Freya 16:44, 21 June 2009 (UTC)

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin