(New page: ==<math>Insert formula here</math>==)
 
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
==<math>Insert formula here</math>==
+
=Proof=
 +
 
 +
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' ==
 +
 
 +
----
 +
 
 +
<math>P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt</math>
 +
 
 +
<math>P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt)</math>
 +
 
 +
Because <math>E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt</math>, it follows that by substitution
 +
 
 +
<math>P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty</math>
 +
 
 +
<math>P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty)</math>
 +
 
 +
<math>P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T}</math>
 +
 
 +
This limit will always evaluate to zero as long as <math>E_\infty</math> is finite.
 +
 
 +
<math>\therefore</math> If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' <math>\square</math>
 +
 
 +
----
 +
 
 +
--[[User:Asiembid|Asiembid]] 14:04, 17 June 2009 (UTC) - Adam Siembida

Latest revision as of 10:04, 17 June 2009

Proof

If $ E_\infty $ is finite, then $ P_\infty $ is always zero


$ P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt $

$ P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt) $

Because $ E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt $, it follows that by substitution

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty $

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty) $

$ P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T} $

This limit will always evaluate to zero as long as $ E_\infty $ is finite.

$ \therefore $ If $ E_\infty $ is finite, then $ P_\infty $ is always zero $ \square $


--Asiembid 14:04, 17 June 2009 (UTC) - Adam Siembida

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach