Line 11: Line 11:
 
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
 
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
  
     <math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^T |\sqrt{t}|^2\,dt=\int_0^T t\,dt</math>
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T |\sqrt{t}|^2\,dt=\int_0^T t\,dt</math>
     <math>P\infty=lim_{T \to \infty} \ 1/(2T)*.5t^2|</math>(from <math>0</math> to <math>T</math>)
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*.5t^2|</math>(from <math>0</math> to <math>T</math>)
     <math>P\infty=lim_{T \to \infty} \ 1/(2T)*(.5T^2)</math>
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(.5T^2)</math>
 
     <math>P\infty=lim_{T \to \infty} \ (.25T)=\infty</math>
 
     <math>P\infty=lim_{T \to \infty} \ (.25T)=\infty</math>
  
Line 28: Line 28:
 
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
 
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
  
     <math>P\infty=lim_{T \to \infty} \ 1/(2T)\int|1|^2dt</math>
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt</math>
     <math>P\infty=lim_{T \to \infty} \ 1/(2T)*t|</math>(from <math>-T</math> to <math>T</math>)
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}t|</math>(from <math>-T</math> to <math>T</math>)
     <math>P\infty=lim_{T \to \infty} \ 1/(2T)*(T-(-T))</math>
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}(T-(-T))</math>
 
     <math>P\infty=lim_{T \to \infty} \ 1</math>
 
     <math>P\infty=lim_{T \to \infty} \ 1</math>
 
     <math>P\infty=1</math>
 
     <math>P\infty=1</math>
  
 
[https://kiwi.ecn.purdue.edu/rhea/index.php/Computing_E_infinity_and_P_infinity Return to Computing E infinity and P infinity]
 
[https://kiwi.ecn.purdue.edu/rhea/index.php/Computing_E_infinity_and_P_infinity Return to Computing E infinity and P infinity]

Revision as of 07:31, 17 June 2009

Work By Ryne Rayburn (rrayburn)

$ x(t)=\sqrt{t} $


$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt $ (due to sqrt limiting to positive Real numbers)
   $ E\infty=.5*t^2| $(from $ 0 $ to $ \infty $)
   $ E\infty=.5(\infty^2-0^2)=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T |\sqrt{t}|^2\,dt=\int_0^T t\,dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*.5t^2| $(from $ 0 $ to $ T $)
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(.5T^2) $
   $ P\infty=lim_{T \to \infty} \ (.25T)=\infty $


$ x(t)=\cos(t)+\jmath\sin(t) $


$ |x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1 $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |1|^2\,dt=t| $(from $ -\infty $ to $ \infty $)
   $ E\infty=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}t| $(from $ -T $ to $ T $)
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}(T-(-T)) $
   $ P\infty=lim_{T \to \infty} \ 1 $
   $ P\infty=1 $

Return to Computing E infinity and P infinity

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman