Line 1: Line 1:
Notice that <math>V</math> is a positive and increasing function, therefore, <math>f</math> is decreasing. Hence <math>f(x)-f(0)=-V_{0}^{x})</math>.
+
From the identity <math>f(0)-(V_{0}^{x})^{1/2} = f(x) \forall x\in[0,1]</math> we notice that <math>V</math> is a positive and increasing function, therefore, <math>f</math> is decreasing. Hence <math>f(x)-f(0)=-V_{0}^{x})</math>.
  
We then have <math>V_{0}^{x}=(V_{0}^{x})^{1/2}</math>
+
We then have <math>V_{0}^{x}=(V_{0}^{x})^{2}</math>
 +
 
 +
It means that there is a point <math>a</math> in <math>[0,1]</math> such that <math>V</math> jumps from <math>0</math> to <math>1</math> right after the point. (It has to occur like that in order to fulfill the identity.)

Revision as of 10:29, 22 July 2008

From the identity $ f(0)-(V_{0}^{x})^{1/2} = f(x) \forall x\in[0,1] $ we notice that $ V $ is a positive and increasing function, therefore, $ f $ is decreasing. Hence $ f(x)-f(0)=-V_{0}^{x}) $.

We then have $ V_{0}^{x}=(V_{0}^{x})^{2} $

It means that there is a point $ a $ in $ [0,1] $ such that $ V $ jumps from $ 0 $ to $ 1 $ right after the point. (It has to occur like that in order to fulfill the identity.)

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal