(New page: #4. Use Ho(e)lder's Inequality to obtain <math>0\leq \int_0^xf\leq [ \int_0^x(f^2) ] ^\frac{1}{2} [\int_0^x 1^2]^\frac{1}{2}=||f\chi_{[0,x]}||_2 x^\frac{1}{2}</math>)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
#4.  Use Ho(e)lder's Inequality to obtain  
 
#4.  Use Ho(e)lder's Inequality to obtain  
  
<math>0\leq \int_0^xf\leq [ \int_0^x(f^2) ] ^\frac{1}{2} [\int_0^x 1^2]^\frac{1}{2}=||f\chi_{[0,x]}||_2 x^\frac{1}{2}</math>
+
<math>0\leq \int_0^xf\leq \big[ \int_0^x(f^2) ] ^\frac{1}{2} [ \int_0^x 1^2]^\frac{1}{2}= ||f\chi_{[0,x]}||_2 x^\frac{1}{2}</math>
 +
 +
Assuming <math>x>0 </math> we have
 +
 
 +
<math>\dfrac{F(x)}{x^{\frac{1}{2}}} \leq ||f\chi_{[0,x]}||_2  \to 0 </math> as <math>x\to 0^+ </math>
 +
 
 +
by absoulute continuity, since <math>f^2 \in L^1. </math>
 +
 
 +
-Matty

Latest revision as of 11:39, 18 July 2008

  1. 4. Use Ho(e)lder's Inequality to obtain

$ 0\leq \int_0^xf\leq \big[ \int_0^x(f^2) ] ^\frac{1}{2} [ \int_0^x 1^2]^\frac{1}{2}= ||f\chi_{[0,x]}||_2 x^\frac{1}{2} $

Assuming $ x>0 $ we have

$ \dfrac{F(x)}{x^{\frac{1}{2}}} \leq ||f\chi_{[0,x]}||_2 \to 0 $ as $ x\to 0^+ $

by absoulute continuity, since $ f^2 \in L^1. $

-Matty

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009