(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
[[Jets7.1 _OldKiwi| Solution to 7.1]]
 
[[Jets7.1 _OldKiwi| Solution to 7.1]]
  
8.<math>(\Rightarrow)</math> First we apply Tchebyshev to <math>E_n</math> and find that
+
[[Jets7.2 _OldKiwi| Solution to 7.2]]
  
<math> (n-1)\left|\{x \in X \mid |f(x)| \geq n-1 \}\right| \leq \int_{E_n}|f|</math>
+
[[Jets7.3 _OldKiwi| Solution to 7.3]]
  
or rather
+
[[Jets7.4 _OldKiwi| Solution to 7.4]]
  
<math>(n-1) m(E_n) \leq \int_{E_n}|f|</math>
+
[[Jets7.5 _OldKiwi| Solution to 7.5]]
  
Since we have that <math>m(E_n)</math> is finite we can move it to the other side of the inequality.
+
[[Jets7.6 _OldKiwi| Solution to 7.6]]
  
<math>nm(E_n) \leq \int_{E_n}|f| + m(E_n)</math>
+
[[Jets7.7 _OldKiwi| Solution to 7.7]]
  
Since this is true for all <math>n</math> we take sums on both sides and note that the <math>E_n</math> are disjoint.
+
[[Jets7.8 _OldKiwi| Solution to 7.8]]
 
+
<math>\sum_{n=1}^{\infty}nm(E_n) \leq \sum_{n=1}^{\infty}\int_{E_n}|f| + \sum_{n=1}^{\infty}m(E_n)</math>
+
 
+
or
+
 
+
<math>\sum_{n=1}^{\infty}nm(E_n)\leq \int_{X}|f| + m(X)</math>
+
 
+
And we are in a finite measure space so <math>m(X) < \infty</math> and since <math>f \in L^1</math> we have <math>\int_{X}|f| < \infty</math>.
+
 
+
Thus we have that  <math>\sum_{n=1}^{\infty}nm(E_n) < \infty</math>.
+
 
+
<math>(\Leftarrow)</math> Since <math>|f|< n</math> in each <math>E_n</math> we have that
+
 
+
<math>\int_X|f| = \sum_{n=1}^{\infty}\left(\int_{E_n}|f|\right) \leq \sum_{n=1}^{\infty}\left( n m(E_n)\right)< \infty</math>
+
 
+
In other words, <math> f \in L^1</math>.
+

Latest revision as of 17:17, 11 July 2008

Solution to 7.1

Solution to 7.2

Solution to 7.3

Solution to 7.4

Solution to 7.5

Solution to 7.6

Solution to 7.7

Solution to 7.8

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang