(New page: 8.<math>(\Rightarrow)</math> First we apply Tchebyshev to <math>E_n</math> and find that <math> (n-1)\left|\{x \in X \mid |f(x)| \geq n-1 \}\right| \leq \int_{E_n}|f|</math> or rather ...)
 
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
8.<math>(\Rightarrow)</math> First we apply Tchebyshev to <math>E_n</math> and find that
+
[[Jets7.1 _OldKiwi| Solution to 7.1]]
  
<math> (n-1)\left|\{x \in X \mid |f(x)| \geq n-1 \}\right| \leq \int_{E_n}|f|</math>
+
[[Jets7.2 _OldKiwi| Solution to 7.2]]
  
or rather
+
[[Jets7.3 _OldKiwi| Solution to 7.3]]
  
<math>(n-1) m(E_n) \leq \int_{E_n}|f|</math>
+
[[Jets7.4 _OldKiwi| Solution to 7.4]]
  
Since we have that <math>m(E_n)</math> is finite we can move it to the other side of the inequality.
+
[[Jets7.5 _OldKiwi| Solution to 7.5]]
  
<math>nm(E_n) \leq \int_{E_n}|f| + m(E_n)</math>
+
[[Jets7.6 _OldKiwi| Solution to 7.6]]
  
Since this is true for all <math>n</math> we take sums on both sides and note that the <math>E_n</math> are disjoint.
+
[[Jets7.7 _OldKiwi| Solution to 7.7]]
  
<math>\sum_{n=1}^{\infty}nm(E_n) \leq \sum_{n=1}^{\infty}\int_{E_n}|f| + \sum_{n=1}^{\infty}m(E_n)</math>
+
[[Jets7.8 _OldKiwi| Solution to 7.8]]
 
+
or
+
 
+
<math>\sum_{n=1}^{\infty}nm(E_n)\leq \int_{X}|f| + m(X)</math>
+
 
+
And we are in a finite measure space so <math>m(X) < \infty</math> and since <math>f \in L^1</math> we have <math>\int_{X}|f| < \infty</math>.
+
 
+
Thus we have that  <math>\sum_{n=1}^{\infty}nm(E_n) < \infty</math>.
+
 
+
<math>(\Leftarrow)</math> Since <math>|f|< n</math> in each <math>E_n</math> we have that
+
 
+
<math>\int_X|f| = \sum_{n=1}^{\infty}\left(\int_{E_n}|f|\right) \leq \sum_{n=1}^{\infty}\left( n m(E_n)\right)< \infty</math>
+
 
+
In other words, <math> f \in L^1</math>.
+

Latest revision as of 17:17, 11 July 2008

Solution to 7.1

Solution to 7.2

Solution to 7.3

Solution to 7.4

Solution to 7.5

Solution to 7.6

Solution to 7.7

Solution to 7.8

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett