Line 1: Line 1:
 
[[Jets7.1 _OldKiwi| Solution to 7.1]]
 
[[Jets7.1 _OldKiwi| Solution to 7.1]]
 
[[Jets7.3 _OldKiwi| Solution to 7.3]]
 
  
 
[[Jets7.5 _OldKiwi| Solution to 7.5]]
 
[[Jets7.5 _OldKiwi| Solution to 7.5]]
Line 9: Line 7:
 
[[Jets7.7 _OldKiwi| Solution to 7.7]]
 
[[Jets7.7 _OldKiwi| Solution to 7.7]]
  
8.<math>(\Rightarrow)</math> First we apply Tchebyshev to <math>E_n</math> and find that
+
[[Jets7.8 _OldKiwi| Solution to 7.8]]
 
+
<math> (n-1)\left|\{x \in X \mid |f(x)| \geq n-1 \}\right| \leq \int_{E_n}|f|</math>
+
 
+
or rather
+
 
+
<math>(n-1) m(E_n) \leq \int_{E_n}|f|</math>
+
 
+
Since we have that <math>m(E_n)</math> is finite we can move it to the other side of the inequality.
+
 
+
<math>nm(E_n) \leq \int_{E_n}|f| + m(E_n)</math>
+
 
+
Since this is true for all <math>n</math> we take sums on both sides and note that the <math>E_n</math> are disjoint.
+
 
+
<math>\sum_{n=1}^{\infty}nm(E_n) \leq \sum_{n=1}^{\infty}\int_{E_n}|f| + \sum_{n=1}^{\infty}m(E_n)</math>
+
 
+
or
+
 
+
<math>\sum_{n=1}^{\infty}nm(E_n)\leq \int_{X}|f| + m(X)</math>
+
 
+
And we are in a finite measure space so <math>m(X) < \infty</math> and since <math>f \in L^1</math> we have <math>\int_{X}|f| < \infty</math>.
+
 
+
Thus we have that  <math>\sum_{n=1}^{\infty}nm(E_n) < \infty</math>.
+
 
+
<math>(\Leftarrow)</math> Since <math>|f|< n</math> in each <math>E_n</math> we have that
+
 
+
<math>\int_X|f| = \sum_{n=1}^{\infty}\left(\int_{E_n}|f|\right) \leq \sum_{n=1}^{\infty}\left( n m(E_n)\right)< \infty</math>
+
 
+
In other words, <math> f \in L^1</math>.
+

Revision as of 23:33, 10 July 2008

Solution to 7.1

Solution to 7.5

Solution to 7.6

Solution to 7.7

Solution to 7.8

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett