(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Recall if <math>f\in L^1_{loc}, </math>  the result for #3 a follows from Lebesgue differentiation theorem.   
+
Recall if <math>f\in L^1_{loc}, </math>  the result for #3a follows from Lebesgue differentiation theorem.   
  
Next if <math>f\notin L^1_{loc}</math> consider the following:
+
Next if <math>f\notin L^1_{loc}</math> consider the following proof:
 
WLOG <math>f\geq 0 </math> by replacing <math> f </math> with <math> |f|.</math>
 
WLOG <math>f\geq 0 </math> by replacing <math> f </math> with <math> |f|.</math>
  
Let <math>x\in \mathbb{R}^n</math>.   
+
Since <math> f \notin L^1_{loc}, \exists x\in \mathbb{R}^n and \exists K\subset \mathbb{R}^n, K </math> compact,s.t. <math>\int_Kf=\infty</math>.   
 +
Choose any <math>y\in\mathbb{R}^n </math>.  Then choose a cube <math>Q\supseteq K</math> centered at <math>y </math> which is possible since <math>K</math> compact implies <math>K </math> bounded. 
 +
Then <math> f^*(y)\geq \dfrac{\int_Qf}{|Q|} \geq \dfrac{\int_Kf}{|Q|}=\infty </math>, so we have the result, namely <math> \{ f^* \geq f \} =\mathbb{R}^n </math>
  
'''Case 1''', <math>\exists K\subset \mathbb{R}^n, K </math> compact, and<math>\int_Kf=\infty</math>. 
+
QED
Choose a cube <math>Q\supseteq K</math> with <math>|Q|<\infty </math> which is possible since <math>K</math> compact implies <math>K </math> bounded.  WLOG <math>x</math> is the center of <math>Q.</math>
+
Then <math>f^*(x)\geq\dfrac{\int_Qf}{|Q|} \geq \dfrac{\int_Kf}{|Q|}=\infty</math>, so our result holds on <math>  \{x|\exists K s.t. \intKf=\infty \} </math>.
+

Latest revision as of 15:09, 9 July 2008

Recall if $ f\in L^1_{loc}, $ the result for #3a follows from Lebesgue differentiation theorem.

Next if $ f\notin L^1_{loc} $ consider the following proof: WLOG $ f\geq 0 $ by replacing $ f $ with $ |f|. $

Since $ f \notin L^1_{loc}, \exists x\in \mathbb{R}^n and \exists K\subset \mathbb{R}^n, K $ compact,s.t. $ \int_Kf=\infty $. Choose any $ y\in\mathbb{R}^n $. Then choose a cube $ Q\supseteq K $ centered at $ y $ which is possible since $ K $ compact implies $ K $ bounded. Then $ f^*(y)\geq \dfrac{\int_Qf}{|Q|} \geq \dfrac{\int_Kf}{|Q|}=\infty $, so we have the result, namely $ \{ f^* \geq f \} =\mathbb{R}^n $

QED

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin