Line 1: Line 1:
 
'''Lemma:''' Let <math>(X,\mathcal{A},\mu)</math> be a finite measure space, and let <math>f</math> be a measurable function on E.  Then  
 
'''Lemma:''' Let <math>(X,\mathcal{A},\mu)</math> be a finite measure space, and let <math>f</math> be a measurable function on E.  Then  
  
<math>lim_n \int_X |f|^n = \mu\left\{|f|=1\right\} + \infty * \mu\left\{|f|>1\right\}</math>
+
<math>\lim_{n \rightarrow \infty} \int_X |f|^n = \mu\left\{|f|=1\right\} + \infty * \mu\left\{|f|>1\right\}</math>
  
 
where we interpret <math>\infty * 0 = 0</math>.
 
where we interpret <math>\infty * 0 = 0</math>.
  
'''Proof:''' <math>\int_X |f|^n = \int_{\left\{|f|>1\right\}} |f|^n  + \int_{\left\{|f|=1\right\}} |f|^n  + \int_{\left\{|f|<1\right\}} |f|^n </math>
+
'''Proof:''' <math>\int_X |f|^n = \int\limits_{\left\{|f|>1\right\}}\!\!\!\!\!|f|^n  + \!\! \int\limits_{\left\{|f|=1\right\}}\!\!\!\!\!|f|^n  + \!\! \int\limits_{\left\{|f|<1\right\}}\!\!\!\!\!|f|^n </math>
  
 
We have
 
We have
  
<math>\int_{\left\{|f|=1\right\}} |f|^n \rightarrow \mu\left\{|f|=1\right\} </math>,
+
<math>\int\limits_{\left\{|f|=1\right\}} \!\!\!\!\! |f|^n \rightarrow \mu\left\{|f|=1\right\} </math>,
  
<math>\int_{\left\{|f|>1\right\}} |f|^n \rightarrow \infty * \mu\left\{|f|>1\right\} </math> by Fatou (or Monotone Convergence Theorem), and
+
<math>\int\limits_{\left\{|f|>1\right\}} \!\!\!\!\!|f|^n \rightarrow \infty * \mu\left\{|f|>1\right\} </math> by Fatou (or Monotone Convergence Theorem), and
  
<math>\int_{\left\{|f|<1\right\}} |f|^n \rightarrow 0 </math> by the Bounded Convergence Theorem, since <math>\mu (X) < \infty</math>.  <math>\square</math>
+
<math>\int\limits_{\left\{|f|<1\right\}} \!\!\!\!\! |f|^n \rightarrow 0 </math> by the Bounded Convergence Theorem, since <math>\mu (X) < \infty</math>.  <math>\square</math>
  
 
'''Remark:''' The hypothesis that <math> \mu(X) < \infty </math> cannot be omitted, as <math>f(x) = \frac{x}{x+1}, X = [0,\infty)</math> shows.  However, if we require that <math>|f|^k \in L^1</math> for some k, then the third equality follows from the Monotone Convergence Theorem, and the Lemma holds under this weaker hypothesis.
 
'''Remark:''' The hypothesis that <math> \mu(X) < \infty </math> cannot be omitted, as <math>f(x) = \frac{x}{x+1}, X = [0,\infty)</math> shows.  However, if we require that <math>|f|^k \in L^1</math> for some k, then the third equality follows from the Monotone Convergence Theorem, and the Lemma holds under this weaker hypothesis.
  
  
a) <math>lim_n \int_0^\pi \sin ^n (x)dx = 0</math>
+
a) <math>\lim_{n \rightarrow \infty} \int_0^\pi \sin^n(x)dx = 0</math>
  
b) <math>lim_n \int_0^\pi 2^n\sin ^n (x)dx = \infty</math>
+
b) <math>\lim_{n \rightarrow \infty} \int_0^\pi 2^n\sin^n(x)dx = \infty</math>

Latest revision as of 09:55, 9 July 2008

Lemma: Let $ (X,\mathcal{A},\mu) $ be a finite measure space, and let $ f $ be a measurable function on E. Then

$ \lim_{n \rightarrow \infty} \int_X |f|^n = \mu\left\{|f|=1\right\} + \infty * \mu\left\{|f|>1\right\} $

where we interpret $ \infty * 0 = 0 $.

Proof: $ \int_X |f|^n = \int\limits_{\left\{|f|>1\right\}}\!\!\!\!\!|f|^n + \!\! \int\limits_{\left\{|f|=1\right\}}\!\!\!\!\!|f|^n + \!\! \int\limits_{\left\{|f|<1\right\}}\!\!\!\!\!|f|^n $

We have

$ \int\limits_{\left\{|f|=1\right\}} \!\!\!\!\! |f|^n \rightarrow \mu\left\{|f|=1\right\} $,

$ \int\limits_{\left\{|f|>1\right\}} \!\!\!\!\!|f|^n \rightarrow \infty * \mu\left\{|f|>1\right\} $ by Fatou (or Monotone Convergence Theorem), and

$ \int\limits_{\left\{|f|<1\right\}} \!\!\!\!\! |f|^n \rightarrow 0 $ by the Bounded Convergence Theorem, since $ \mu (X) < \infty $. $ \square $

Remark: The hypothesis that $ \mu(X) < \infty $ cannot be omitted, as $ f(x) = \frac{x}{x+1}, X = [0,\infty) $ shows. However, if we require that $ |f|^k \in L^1 $ for some k, then the third equality follows from the Monotone Convergence Theorem, and the Lemma holds under this weaker hypothesis.


a) $ \lim_{n \rightarrow \infty} \int_0^\pi \sin^n(x)dx = 0 $

b) $ \lim_{n \rightarrow \infty} \int_0^\pi 2^n\sin^n(x)dx = \infty $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison