Line 62: Line 62:
  
  
<math> \frac{e^{-7\infty -s\infty}}{-7-s} </math> goes to 0
+
<math> \frac{e^{-7\infty -s\infty}}{-7-s} </math> Numerator goes to 0
  
  
Line 76: Line 76:
 
d)Find the output y(t) of the above LTI system when the input x(t) is <math> e^{j7t} </math>
 
d)Find the output y(t) of the above LTI system when the input x(t) is <math> e^{j7t} </math>
  
y(t) = x(t) convolved with h(t)
+
<math> y(t) = x(t) \convolution h(t) </math>
  
x(t) = e^(j7t)
+
<maht> x(t) = e^{j7t} </math>
  
h(t) = e^(-7t)u(t)
+
<math> h(t) = e^{-7t}u(t) </math>
  
Using the properties of convolution we will choose to convolve using x(t-tau) and h(tau) for simplicity.
+
Using the properties of convolution we will choose to convolve using <math> x(t-\tau) </math> and <math> h(\tau) </math> for simplicity.
 +
 
 +
 
 +
<math> y(t) = \int_{-\infty^\infty e^{j7(t-\tau)}e^{-7\tau}u(\tau)d\tau </math>
  
y(t) = Integral(-infinity to infinity)e^(j7(t-tau))e^(-7tau)u(tau)dtau
 
  
 
Drop the u(t) and change the integration limits.
 
Drop the u(t) and change the integration limits.
  
y(t) = Integral(0 to infinity)e^(j7(t-tau))e^(-7tau)dtau
+
 
 +
<math> y(t) = \int_0^\infty e^{j7(t-\tau)}e^{-7\tau}d\tau
 +
 
  
 
Simplify the exponentials.
 
Simplify the exponentials.
  
y(t) = Integral(0 to infinity)e^(-7tau + j7t - j7tau)dtau
 
  
y(t) = (e^(-7tau + j7tau - j7tau))/(-7-j7) evaluated from 0 to inifity
+
<math> y(t) = \int_0^\infty e^{-7\tau + j7t - j7\tau}d\tau </math>
 +
 
 +
 
 +
<math> y(t) = \frac{e^{-7\tau + j7\tau - j7\tau}}{-7-j7} \bigg|_0^\infty </math>
 +
 
 +
 
 +
<math> y(t) = \frac{e^{-\infty}}{-7-j7} + \frac{e^{j7t}}{7+7j} </math>
  
y(t) = e^(-infinity)/(-7-j7) + e^(j7t)/(7+7j)
 
  
y(t) = e^(j7t)/(7+7j)
+
<math> y(t) = \frac{e^{j7t}}{7+7j} </math>

Revision as of 20:56, 30 June 2008

Exam 1, Problem 6 - Summer 2008

a) By Inspection the linear constant-coefficient differential equation that describes the LTI system is:


$ y(t)= \frac{1}{7}x(t)- \frac{1}{7}\frac{dy(t)}{dt} $


b) Show that the impulse response to this LTI system is given by $ h(t)=e^{-7t}u(t) $

This means that $ x(t) = \delta{(t)} $ and $ y(t) = e^{-7t}u(t) $


$ e^{-7t}u(t) = \frac{1}{7}\delta{(t) } - \frac{1}{7}\frac{d(e^{-7t}u(t))}{dt} $


Differentiating $ \frac{1}{7}\frac{d(e^{-7t}u(t))}{dt} $ requires use of the chain rule.

This portion of the equation becomes:


$ \frac{1}{7}(-7)e^{-7t}u(t) - \frac{1}{7}\delta{(t) }e^{-7t} $


$ \frac{-1}{7}\delta{(t) }e^{-7t} $ is $ \frac{-1}{7}\delta{(t) }e^{-7t} $ evaluated at t=0 or $ \frac{-1}{7}\delta{(t) }(1) $


Plugging that back in yields:


$ e^{-7t}u(t) = \frac{1}{7}\delta{(t) } - \frac{-7}{7}e^{-7t}u(t) - \frac{1}{7}\delta{(t) } $


This equation simplifies to:

0=0 indicating that it is correct.


c) Find H(s) at s=jw for the LTI system with impulse response $ h(t)=e^{-7t}u(t) $


$ H(s) = \int_{-\infty }^\infty h(t)e^{-st}dt $


$ H(s) = \int_{-\infty }^\infty e^{-7t}u(t)e^{-st}dt $


Limits change to 0 to $ \infty $ and u(t) drops out.


$ H(s) = \int_0^\infty e^(-7t)e^{-st}dt $


$ H(s) = \int_0^\infty e^{-7t-st}dt $


$ H(s) = \frac{e^{-7t-st}}{-7-s} \bigg|_0^\infty $


$ H(s) = \frac{e^{-7\infty -s\infty}}{-7-s} - \frac{e^{0}}{-7-s} $


$ \frac{e^{-7\infty -s\infty}}{-7-s} $ Numerator goes to 0


$ H(s) = \frac{1}{7+s} $


$ H(jw) = \frac{1}{7+jw} $



d)Find the output y(t) of the above LTI system when the input x(t) is $ e^{j7t} $

$ y(t) = x(t) \convolution h(t) $

<maht> x(t) = e^{j7t} </math>

$ h(t) = e^{-7t}u(t) $

Using the properties of convolution we will choose to convolve using $ x(t-\tau) $ and $ h(\tau) $ for simplicity.


$ y(t) = \int_{-\infty^\infty e^{j7(t-\tau)}e^{-7\tau}u(\tau)d\tau $


Drop the u(t) and change the integration limits.


$ y(t) = \int_0^\infty e^{j7(t-\tau)}e^{-7\tau}d\tau Simplify the exponentials. <math> y(t) = \int_0^\infty e^{-7\tau + j7t - j7\tau}d\tau $


$ y(t) = \frac{e^{-7\tau + j7\tau - j7\tau}}{-7-j7} \bigg|_0^\infty $


$ y(t) = \frac{e^{-\infty}}{-7-j7} + \frac{e^{j7t}}{7+7j} $


$ y(t) = \frac{e^{j7t}}{7+7j} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010