(New page: Let's take the convolution of the two most general unit-step exponentials in CT. This solution can be very helpful in checking your work for convolutions of this form. Just plug in your ...)
 
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
(I know this is kinda long, but it is very detailed to show the process of how to get to the general simplified solution.)
 
(I know this is kinda long, but it is very detailed to show the process of how to get to the general simplified solution.)
  
- <img alt="tex:x_1(t)=Ae^{Bt+C}u(Dt+E)" />
+
- <math>\displaystyle x_1(t)=Ae^{Bt+C}u(Dt+E)</math>
  
- <img alt="tex:x_2(t)=Fe^{Gt+H}u(It+J)" />
+
- <math>\displaystyle x_2(t)=Fe^{Gt+H}u(It+J)</math>
  
- <img alt="tex:x_1(t)*x_2(t)=\int_{\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau" />
+
- <math>\displaystyle x_1(t)*x_2(t)=\int_{\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau</math>
  
- <img alt="tex:\quad=\int_{\infty}^{\infty}Ae^{B\tau+C}u(D\tau+E)Fe^{G(t-\tau)+H}u(I(t-\tau)+J)d\tau" />
+
- <math>\displaystyle \quad=\int_{\infty}^{\infty}Ae^{B\tau+C}u(D\tau+E)Fe^{G(t-\tau)+H}u(I(t-\tau)+J)d\tau</math>
  
- <img alt="tex:\quad=AF\int_{\infty}^{\infty}e^{B\tau+C+G(t-\tau)+H}u(D\tau+E)u(It-I\tau+J)d\tau" />
+
- <math>\displaystyle \quad=AF\int_{\infty}^{\infty}e^{B\tau+C+G(t-\tau)+H}u(D\tau+E)u(It-I\tau+J)d\tau</math>
  
- <img alt="tex:where\;u(D\tau+E)=0\;,for\;D\tau+E<0\;\rightarrow\;\tau<\frac{-E}{D}" />
+
- <math>\displaystyle where\;u(D\tau+E)=0\;,for\;D\tau+E<0\;\rightarrow\;\tau<\frac{-E}{D}</math>
  
- <img alt="tex:\quad=AF\int_{\frac{-E}{D}}^{\infty}e^{\tau(B-G)+Gt+C+H}u(It-I\tau+J)d\tau" />
+
- <math>\displaystyle \quad=AF\int_{\frac{-E}{D}}^{\infty}e^{\tau(B-G)+Gt+C+H}u(It-I\tau+J)d\tau</math>
  
- <img alt="tex:where\;u(It-I\tau+J)=0\;,for\;It-I\tau+J<0\;\rightarrow\;\tau>t+\frac{J}{I}" />
+
- <math>\displaystyle where\;u(It-I\tau+J)=0\;,for\;It-I\tau+J<0\;\rightarrow\;\tau>t+\frac{J}{I}</math>
  
- <img alt="tex:\;\;\;=AF\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)+Gt+C+H}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D})" />
+
- <math>\displaystyle \;\;\;=AF\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)+Gt+C+H}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D})</math>
  
- <img alt="tex:\;\;\;=AFe^{Gt+C+H}\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D})" />
+
- <math>\displaystyle \;\;\;=AFe^{Gt+C+H}\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D})</math>
  
- <img alt="tex:\;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}\left[e^{\tau(B-G)}\right]_{\frac{-E}{D}}^{t+\frac{J}{I}}\cdot u(t+\frac{J}{I}+\frac{E}{D})" />
+
- <math>\displaystyle \;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}\left[e^{\tau(B-G)}\right]_{\frac{-E}{D}}^{t+\frac{J}{I}}\cdot u(t+\frac{J}{I}+\frac{E}{D})</math>
  
- <img alt="tex:\;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}(e^{(t+\frac{J}{I})\cdot(B-G)}-e^{\frac{-E}{D}\cdot(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D})" />
+
- <math>\displaystyle \;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}(e^{(t+\frac{J}{I})\cdot(B-G)}-e^{\frac{-E}{D}\cdot(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D})</math>
  
- <img alt="tex:\;\;\;=\frac{AF}{B-G}(e^{Gt+CH+(t+\frac{J}{I})\cdot(B-G)}-e^{Gt+C+H-\frac{E}{D}(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D})" />
+
- <math>\displaystyle \;\;\;=\frac{AF}{B-G}(e^{Gt+CH+(t+\frac{J}{I})\cdot(B-G)}-e^{Gt+C+H-\frac{E}{D}(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D})</math>
  
- <img alt="tex:\;\;\;=\frac{AF}{B-G}(e^{Bt+C+H+\frac{J}{I}(B-G)}-e^{Gt+C+H+\frac{E}{D}(G-B)})\cdot u(t+\frac{J}{I}+\frac{E}{D})" />
+
- <math>\displaystyle \;\;\;=\frac{AF}{B-G}(e^{Bt+C+H+\frac{J}{I}(B-G)}-e^{Gt+C+H+\frac{E}{D}(G-B)})\cdot u(t+\frac{J}{I}+\frac{E}{D})</math>
  
 
Example: Problem 2 on Fall 06 Midterm 1:
 
Example: Problem 2 on Fall 06 Midterm 1:
 
 
  &nbsp;
 
  
- <img alt="tex:Let:\;x_1(t)=x(t)=e^{-2t}u(t)" />
+
&nbsp;
  
- <img alt="tex:\;\;\;\;x_2(t)=h(t)=u(t)" />
+
- <math>\displaystyle Let:\;x_1(t)=x(t)=e^{-2t}u(t)</math>
  
- <img alt="tex:Thus:" />
+
- <math>\displaystyle \;\;\;\;x_2(t)=h(t)=u(t)</math>
  
- <img alt="tex:A=1,\;B=-2,\;C=0,\;D=1,\;E=0,\;F=1,\;G=0,\;H=0,\;I=1,\;J=0" />
+
- <math>\displaystyle Thus:</math>
  
- <img alt="tex:x(t)*h(t)=x_1(t)*x_2(t)" />
+
- <math>\displaystyle A=1,\;B=-2,\;C=0,\;D=1,\;E=0,\;F=1,\;G=0,\;H=0,\;I=1,\;J=0</math>
  
- <img alt="tex:\;\;\;=\frac{1\cdot1}{-2-0}(e^{-2t+0+0+\frac{0}{1}(-2-0)}-e^{0t+0+0+\frac{0}{1}(0--2)})\cdot u(t+\frac{0}{1}+\frac{0}{1})" />
+
- <math>\displaystyle x(t)*h(t)=x_1(t)*x_2(t)</math>
  
- <img alt="tex:\;\;\;=\frac{-1}{2}(e^{-2t}-1)\cdot u(t)" />
+
- <math>\displaystyle \;\;\;=\frac{1\cdot1}{-2-0}(e^{-2t+0+0+\frac{0}{1}(-2-0)}-e^{0t+0+0+\frac{0}{1}(0--2)})\cdot u(t+\frac{0}{1}+\frac{0}{1})</math>
  
- <img alt="tex:\;\;\;=\frac{1}{2}(1-e^{-2t})\cdot u(t)" />
+
- <math>\displaystyle \;\;\;=\frac{-1}{2}(e^{-2t}-1)\cdot u(t)</math>
  
<style>
+
- <math>\displaystyle \;\;\;=\frac{1}{2}(1-e^{-2t})\cdot u(t)</math>
ul {
+
list-style: none;
+
}
+
li {
+
margin-bottom: 1.5em;
+
}
+
</style>
+

Latest revision as of 21:33, 16 March 2008

Let's take the convolution of the two most general unit-step exponentials in CT.

This solution can be very helpful in checking your work for convolutions of this form. Just plug in your numbers for the capital letters.

(I know this is kinda long, but it is very detailed to show the process of how to get to the general simplified solution.)

- $ \displaystyle x_1(t)=Ae^{Bt+C}u(Dt+E) $

- $ \displaystyle x_2(t)=Fe^{Gt+H}u(It+J) $

- $ \displaystyle x_1(t)*x_2(t)=\int_{\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau $

- $ \displaystyle \quad=\int_{\infty}^{\infty}Ae^{B\tau+C}u(D\tau+E)Fe^{G(t-\tau)+H}u(I(t-\tau)+J)d\tau $

- $ \displaystyle \quad=AF\int_{\infty}^{\infty}e^{B\tau+C+G(t-\tau)+H}u(D\tau+E)u(It-I\tau+J)d\tau $

- $ \displaystyle where\;u(D\tau+E)=0\;,for\;D\tau+E<0\;\rightarrow\;\tau<\frac{-E}{D} $

- $ \displaystyle \quad=AF\int_{\frac{-E}{D}}^{\infty}e^{\tau(B-G)+Gt+C+H}u(It-I\tau+J)d\tau $

- $ \displaystyle where\;u(It-I\tau+J)=0\;,for\;It-I\tau+J<0\;\rightarrow\;\tau>t+\frac{J}{I} $

- $ \displaystyle \;\;\;=AF\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)+Gt+C+H}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) $

- $ \displaystyle \;\;\;=AFe^{Gt+C+H}\int_{\frac{-E}{D}}^{t+\frac{J}{I}}e^{\tau(B-G)}d\tau\cdot u(t+\frac{J}{I}+\frac{E}{D}) $

- $ \displaystyle \;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}\left[e^{\tau(B-G)}\right]_{\frac{-E}{D}}^{t+\frac{J}{I}}\cdot u(t+\frac{J}{I}+\frac{E}{D}) $

- $ \displaystyle \;\;\;=AFe^{Gt+C+H}\frac{1}{B-G}(e^{(t+\frac{J}{I})\cdot(B-G)}-e^{\frac{-E}{D}\cdot(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) $

- $ \displaystyle \;\;\;=\frac{AF}{B-G}(e^{Gt+CH+(t+\frac{J}{I})\cdot(B-G)}-e^{Gt+C+H-\frac{E}{D}(B-G)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) $

- $ \displaystyle \;\;\;=\frac{AF}{B-G}(e^{Bt+C+H+\frac{J}{I}(B-G)}-e^{Gt+C+H+\frac{E}{D}(G-B)})\cdot u(t+\frac{J}{I}+\frac{E}{D}) $

Example: Problem 2 on Fall 06 Midterm 1:

 

- $ \displaystyle Let:\;x_1(t)=x(t)=e^{-2t}u(t) $

- $ \displaystyle \;\;\;\;x_2(t)=h(t)=u(t) $

- $ \displaystyle Thus: $

- $ \displaystyle A=1,\;B=-2,\;C=0,\;D=1,\;E=0,\;F=1,\;G=0,\;H=0,\;I=1,\;J=0 $

- $ \displaystyle x(t)*h(t)=x_1(t)*x_2(t) $

- $ \displaystyle \;\;\;=\frac{1\cdot1}{-2-0}(e^{-2t+0+0+\frac{0}{1}(-2-0)}-e^{0t+0+0+\frac{0}{1}(0--2)})\cdot u(t+\frac{0}{1}+\frac{0}{1}) $

- $ \displaystyle \;\;\;=\frac{-1}{2}(e^{-2t}-1)\cdot u(t) $

- $ \displaystyle \;\;\;=\frac{1}{2}(1-e^{-2t})\cdot u(t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett