(One intermediate revision by the same user not shown)
Line 19: Line 19:
  
 
'''b)'''
 
'''b)'''
<math>\lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}} = \lim_{n\to\infty}\frac{(||f||_{n+1})^{n+1}}{(||f||_{n})^{n}} = \frac{(||f||_{\infty})^{n+1}}{(||f||_{\infty})^{n}}</math>
+
<math>\lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}} = \lim_{n\to\infty}\frac{(||f||_{n+1})^{n+1}}{(||f||_{n})^{n}} = \frac{(||f||_{\infty})^{n+1}}{(||f||_{\infty})^{n}}=||f||_{\infty}</math>
 +
 
 +
'''c)'''
 +
If the space is of infinite measure, it is not true. Let <math>f(x)=1</math> for all real <math>x</math>, we have a counter example.

Latest revision as of 13:50, 11 July 2008

a) Notice that $ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M $

So, $ (\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n} $

and we have the identity.

Notice that it is true for true for finite measure space.

b) $ \lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}} = \lim_{n\to\infty}\frac{(||f||_{n+1})^{n+1}}{(||f||_{n})^{n}} = \frac{(||f||_{\infty})^{n+1}}{(||f||_{\infty})^{n}}=||f||_{\infty} $

c) If the space is of infinite measure, it is not true. Let $ f(x)=1 $ for all real $ x $, we have a counter example.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn