Line 5: Line 5:
 
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau - t)h(\tau)\, d\tau </math>
 
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau - t)h(\tau)\, d\tau </math>
  
<math> \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(\tau)\, d\tau ~~~(x(\tau - t)~is~stable~as~x(t)~is~stable.</math>
+
<math> \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(\tau)\, d\tau ~~~\leftrightarrow~~~x(\tau - t)~is~stable~as~x(t)~is~stable.</math>
  
 
<math> \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^\tau[u(\tau-2) - u(\tau-5)]\, d\tau </math>
 
<math> \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^\tau[u(\tau-2) - u(\tau-5)]\, d\tau </math>

Revision as of 19:37, 1 July 2008

I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.

Its given that $ x(t) \le B $

$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau - t)h(\tau)\, d\tau $

$ \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(\tau)\, d\tau ~~~\leftrightarrow~~~x(\tau - t)~is~stable~as~x(t)~is~stable. $

$ \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^\tau[u(\tau-2) - u(\tau-5)]\, d\tau $

$ \Rightarrow ~y(t) \le B\int_{2}^{5} e^\tau\, d\tau $

$ \Rightarrow ~y(t) \le B*(e^5 - e^2) $

Hence $ y(t) \le B*c \le C~, ~~~ (where~c = e^5 - e^2 ~and ~~C = B*c) $

$ \therefore y(t) ~is ~bounded $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang