(New page: I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable. Its given that <math> x(t) \le B </math> <math> y(t) = x(t) * h(t...)
 
Line 3: Line 3:
 
Its given that <math> x(t) \le B </math>
 
Its given that <math> x(t) \le B </math>
  
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math>
+
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau - t)h(\tau)\, d\tau </math>
  
 
<math> \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math>
 
<math> \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math>

Revision as of 19:33, 1 July 2008

I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.

Its given that $ x(t) \le B $

$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau - t)h(\tau)\, d\tau $

$ \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt $

$ \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^t[u(t-2) - u(t-5)]\, dt $

$ \Rightarrow ~y(t) \le B\int_{2}^{5} e^t\, dt $

$ \Rightarrow ~y(t) \le B*(e^5 - e^2) $

Hence $ y(t) \le B*c \le C~, ~~~ (where~c = e^5 - e^2 ~and ~~C = B*c) $

$ \therefore y(t) ~is ~bounded $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn