(LTI Systems)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==LTI Systems==
 
==LTI Systems==
  
==Chapter Notes==
+
[[Properties of Convolution and LTI systems_Old Kiwi]]
 +
 
 +
[[Convolution Simplification_Old Kiwi]]
 +
 
 +
[[Most general Convolutions (CT)_Old Kiwi]]
 +
 
 +
[[Definition of sampling theorem_Old Kiwi]]
 +
 
 +
==Chapter 2 Class Notes==
 +
 
 +
[[Media:ECE_Ch2_pt1.pdf _Old Kiwi| part 1]]
 +
 
 +
[[Media:ECE_Ch2_pt2.pdf _Old Kiwi| part 2]]
 +
 
 +
[[Media:ECE_Ch2_pt3.pdf _Old Kiwi| part 3]]
  
 
==Convolution Example==
 
==Convolution Example==
Line 9: Line 23:
 
x(t) = u(t)
 
x(t) = u(t)
  
h(t) = {e}^{-\alpha t}u(t), \alpha > 0
+
h(t) = <math>{e}^{-\alpha t}u(t)</math>, \alpha > 0
  
 
Now, to convolute them...
 
Now, to convolute them...
Line 17: Line 31:
 
2.      <math>y(t) = \int_{-\infty}^{\infty}u(\tau){e}^{-\alpha (t-\tau)}u(t-\tau)d\tau</math>
 
2.      <math>y(t) = \int_{-\infty}^{\infty}u(\tau){e}^{-\alpha (t-\tau)}u(t-\tau)d\tau</math>
  
Since <math>u(\tau)*u(t-\tau) = 0 when t < 0, also when \tau > t</math>, you can set the limit accordingly.
+
Since <math>u(\tau)*u(t-\tau)</math> = 0 when t < 0, also when <math>\tau > t</math>, you can set the limit accordingly.
 
Keep in mind the following steps (4&5) are for t > 0, else the function is equal to 0.
 
Keep in mind the following steps (4&5) are for t > 0, else the function is equal to 0.
  
Line 34: Line 48:
 
2.      <math>y(t) = \int_{-\infty}^{\infty}{e}^{-\alpha (\tau)}u(\tau)u(t-\tau)d\tau</math>
 
2.      <math>y(t) = \int_{-\infty}^{\infty}{e}^{-\alpha (\tau)}u(\tau)u(t-\tau)d\tau</math>
  
Since <math>u(\tau)*u(t-\tau) = 0 when t < 0, also when \tau > t</math>, you can set the limit accordingly.
+
Since <math>u(\tau)*u(t-\tau)</math> = 0 when t < 0, also when <math>\tau > t</math>, you can set the limit accordingly.
 
Keep in mind the following step (4) is for t > 0, else the function is equal to 0.
 
Keep in mind the following step (4) is for t > 0, else the function is equal to 0.
  

Latest revision as of 21:12, 16 March 2008

LTI Systems

Properties of Convolution and LTI systems_Old Kiwi

Convolution Simplification_Old Kiwi

Most general Convolutions (CT)_Old Kiwi

Definition of sampling theorem_Old Kiwi

Chapter 2 Class Notes

part 1

part 2

part 3

Convolution Example

This is an example of convolution done two ways on a fairly simple general signal.

x(t) = u(t)

h(t) = $ {e}^{-\alpha t}u(t) $, \alpha > 0

Now, to convolute them...

1. $ y(t) = x(t)*h(t) = \int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau $

2. $ y(t) = \int_{-\infty}^{\infty}u(\tau){e}^{-\alpha (t-\tau)}u(t-\tau)d\tau $

Since $ u(\tau)*u(t-\tau) $ = 0 when t < 0, also when $ \tau > t $, you can set the limit accordingly. Keep in mind the following steps (4&5) are for t > 0, else the function is equal to 0.

3. $ y(t) = \int_{0}^{t} {e}^{-\alpha (t-\tau)}d\tau = {e}^{-\alpha t} \int_{0}^{t}{e}^{ \alpha \tau}d\tau $

4. $ y(t) = {e}^{-\alpha t}\frac{1}{\alpha}({e}^{\alpha t}-1) = \frac{1}{\alpha}(1-{e}^{-\alpha t}) $

Now you can replace the condition in steps 4&5 with a u(t).

5. $ y(t) = \frac{1}{\alpha}(1-{e}^{-\alpha t})u(t) $

Now, the other way... (by the commutative property)

1. $ y(t) = h(t)*x(t) = \int_{-\infty}^{\infty}h(\tau)x(t-\tau)d\tau $

2. $ y(t) = \int_{-\infty}^{\infty}{e}^{-\alpha (\tau)}u(\tau)u(t-\tau)d\tau $

Since $ u(\tau)*u(t-\tau) $ = 0 when t < 0, also when $ \tau > t $, you can set the limit accordingly. Keep in mind the following step (4) is for t > 0, else the function is equal to 0.

3. $ y(t) = \int_{0}^{t} {e}^{-\alpha \tau}d\tau = \frac{1}{\alpha}(1-{e}^{-\alpha t}) $

Now you can replace the condition in step 4 with a u(t).

4. $ y(t) = \frac{1}{\alpha}(1-{e}^{-\alpha t})u(t) $

End

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin