Line 2: Line 2:
  
 
a) <br />
 
a) <br />
<math>h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7])</math>
+
<math>h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7])</math>--[[User:Kim415|Kim415]] 16:15, 1 March 2009 (UTC)
  
 
b)<br />
 
b)<br />
 
<math>y(z) = \frac{1}{8}(x(z) + x(z)z^{-1} + x(z)z^{-2}+x(z)z^{-3}+x(z)z^{-4}+x(z)z^{-5}+x(z)z^{-6}+x(z)z^{-7})</math>
 
<math>y(z) = \frac{1}{8}(x(z) + x(z)z^{-1} + x(z)z^{-2}+x(z)z^{-3}+x(z)z^{-4}+x(z)z^{-5}+x(z)z^{-6}+x(z)z^{-7})</math>
<math>H(z) = \frac{y(z)}{x(z)} =  \frac{1}{8}(1 + z^{-1} + z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7})</math>
+
<math>H(z) = \frac{y(z)}{x(z)} =  \frac{1}{8}(1 + z^{-1} + z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7})</math>--[[User:Kim415|Kim415]] 16:15, 1 March 2009 (UTC)
 +
 
 +
c)<br />
 +
 
 +
<math>H(z) = \frac{1}{8} \prod_{7}^{0}(z - z_{k})</math>
 +
 
 +
Is anybody who figures out C)?--[[User:Kim415|Kim415]] 16:15, 1 March 2009 (UTC)

Revision as of 12:15, 1 March 2009


a)
$ h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7]) $--Kim415 16:15, 1 March 2009 (UTC)

b)
$ y(z) = \frac{1}{8}(x(z) + x(z)z^{-1} + x(z)z^{-2}+x(z)z^{-3}+x(z)z^{-4}+x(z)z^{-5}+x(z)z^{-6}+x(z)z^{-7}) $ $ H(z) = \frac{y(z)}{x(z)} = \frac{1}{8}(1 + z^{-1} + z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7}) $--Kim415 16:15, 1 March 2009 (UTC)

c)

$ H(z) = \frac{1}{8} \prod_{7}^{0}(z - z_{k}) $

Is anybody who figures out C)?--Kim415 16:15, 1 March 2009 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood