(New page: == Laplace Transforms == Laplace Transforms provide a very convenient method of solving differential equations, transforming from the time domain to the s domain, where s is a complex numb...)
 
(Laplace Transforms)
Line 1: Line 1:
 
== Laplace Transforms ==
 
== Laplace Transforms ==
 
Laplace Transforms provide a very convenient method of solving differential equations,
 
Laplace Transforms provide a very convenient method of solving differential equations,
transforming from the time domain to the s domain, where s is a complex number of form <math> S = \sigma + j\omega
+
transforming from the time domain to the s domain, where s is a complex number of form <math> S = \sigma + j\omega </math>
  
  
 
The bilateral Laplace transform of f(t) is defined as
 
The bilateral Laplace transform of f(t) is defined as
 +
 +
:<math>X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt</math>
 +
 +
 +
Now let us deal with the '''region of convergence''' ( those values for which the laplace transform converges )
 +
 +
Let :<math> x(t) = e^{-2t} u (t) </math>
 +
 +
Thus,  <math> X(s) = \int^{\infty}_{0}e^{-2t}e^{-st}dt</math>
 +
 +
:<math>X(s) = \int^{\infty}_{0}e^{-(2+s)t}dt</math>
 +
 +
            = <math>\frac{1}{s+2}</math>  if Re(s) > -2
 +
            = 0    else
 +
 +
Hence '''ROC''' : Re (s) > -2
 +
 +
Let :<math> x(t) = -e^{-2t} u (-t) </math>
 +
 +
Thus,  <math> X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-st}dt</math>
 +
 +
:<math>X(s) = \int^{0}_{-\infty}-e^{-(2+s)t}dt</math>
 +
 +
            = <math>\frac{1}{s+2}</math>  if Re(s) < -2
 +
            = 0    else
 +
 +
Hence '''ROC''' : Re (s) < -2
 +
 +
Here we observe that the two different signals have the same laplace transform
 +
 +
In such cases we should be careful while taking the inverse laplace transform.Thus while looking at the table od inverse laplace transform we should pay utmost importance to the region of convergence specified with the given laplace transform.

Revision as of 12:25, 24 November 2008

Laplace Transforms

Laplace Transforms provide a very convenient method of solving differential equations, transforming from the time domain to the s domain, where s is a complex number of form $ S = \sigma + j\omega $


The bilateral Laplace transform of f(t) is defined as

$ X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt $


Now let us deal with the region of convergence ( those values for which the laplace transform converges )

Let :$ x(t) = e^{-2t} u (t) $

Thus, $ X(s) = \int^{\infty}_{0}e^{-2t}e^{-st}dt $

$ X(s) = \int^{\infty}_{0}e^{-(2+s)t}dt $
           = $ \frac{1}{s+2} $  if Re(s) > -2
           = 0     else

Hence ROC : Re (s) > -2

Let :$ x(t) = -e^{-2t} u (-t) $

Thus, $ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-st}dt $

$ X(s) = \int^{0}_{-\infty}-e^{-(2+s)t}dt $
           = $ \frac{1}{s+2} $  if Re(s) < -2
           = 0     else

Hence ROC : Re (s) < -2

Here we observe that the two different signals have the same laplace transform

In such cases we should be careful while taking the inverse laplace transform.Thus while looking at the table od inverse laplace transform we should pay utmost importance to the region of convergence specified with the given laplace transform.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch