(New page: == Sampling Theorem == Let <math>\omega_m</math> be a non-negative number. Let <math>x(t)</math> be a signal with <math>X(\omega) = 0</math> when <math>|\omega| > \omega_m</math>. Consi...)
 
Line 7: Line 7:
 
Consider the samples <math>x(nT)</math> for <math>n = 0, +-1, +-2, ...</math>
 
Consider the samples <math>x(nT)</math> for <math>n = 0, +-1, +-2, ...</math>
  
If <math>T < \frac{1}{2}(\frac{2\pi}{\omega_m})</math> then <math>x(t)</math> can be uniquely recovered from its smaples.
+
If <math>T < \frac{1}{2}(\frac{2\pi}{\omega_m})</math> then <math>x(t)</math> can be uniquely recovered from its samples.
 +
 
 +
 
 +
== Variable Definitions ==
 +
 
 +
<math>T</math> Sampling Period
 +
 
 +
<math>\frac{2\pi}/T = \omega_s</math> Sampling Frequency
 +
 
 +
<math>T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m</math>

Revision as of 11:11, 10 November 2008

Sampling Theorem

Let $ \omega_m $ be a non-negative number.

Let $ x(t) $ be a signal with $ X(\omega) = 0 $ when $ |\omega| > \omega_m $.

Consider the samples $ x(nT) $ for $ n = 0, +-1, +-2, ... $

If $ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) $ then $ x(t) $ can be uniquely recovered from its samples.


Variable Definitions

$ T $ Sampling Period

$ \frac{2\pi}/T = \omega_s $ Sampling Frequency

$ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang