(New page: == Chosen Signal to Transform == The signal we will transform here will be <math>x(t)=e^{2jt}*(u(t+4)-u(t-4))</math> ==Transform by integral== <math> = \int_{-\infty}^{\infty}e^{2jt}*(u...)
(No difference)

Revision as of 10:00, 8 October 2008

Chosen Signal to Transform

The signal we will transform here will be $ x(t)=e^{2jt}*(u(t+4)-u(t-4)) $

Transform by integral

$ = \int_{-\infty}^{\infty}e^{2jt}*(u(t+4)-u(t-4))e^{-j\omega t}dt\, $

$ = \int_{-4}^{4}e^{2jt}e^{-j\omega t}dt \, $

$ = \int_{-4}^{4}e^{2jt -j\omega t}dt\, $

$ = \int_{-4}^{4}e^{t*(2j -j\omega )}dt \, $

$ = \frac{e^{2jt - j\omega t}}{2j-j\omega}]_{-4}^{4} \, $

$ = \frac{e^{8j - 4j\omega} - e^{-8j + 4j\omega}}{2j-j\omega} \, $

$ = \frac{e^{j(8 - 4\omega )} - e^{-j(8 - 4\omega )}}{j(2-\omega )} \, $

$ = \frac{2sin(8 - 4\omega )}{2-\omega }\, $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin