Line 2: | Line 2: | ||
<math>\,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\,</math> | <math>\,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\,</math> | ||
− | |||
== Answer == | == Answer == | ||
− | <math>\,x(t)=\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math> | + | <math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math> |
+ | |||
+ | <math>\,x(t)=\int_{-\infty}^{\infty} |
Revision as of 20:46, 5 October 2008
Compute the inverse Fourier transform of the following signal using the integral formula:
$ \,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\, $
Answer
$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \, $
$ \,x(t)=\int_{-\infty}^{\infty} $