(→Part A) |
(→Part A) |
||
Line 18: | Line 18: | ||
<math>H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as}</math> | <math>H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as}</math> | ||
+ | |||
+ | ==Part B== | ||
+ | I REFERRED TO RONY WIJAYA'S ANSWER | ||
+ | Signal defined in Question 1: | ||
+ | <math>x(t) = cos(3\pi t+\pi) \!</math> <br> | ||
+ | <br> | ||
+ | <math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math> | ||
+ | |||
+ | <math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math> | ||
+ | |||
+ | From Question 1: | ||
+ | <math>x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\,</math><br> | ||
+ | With this expression we can conclude:<br> | ||
+ | <math>a_1 = 3\,</math><br> | ||
+ | <math>a_{-1} = 3\,</math><br> | ||
+ | <math>a_2 = 4\,</math><br> | ||
+ | <math>a_{-2} = -4\,</math><br> | ||
+ | |||
+ | <math>x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\,</math><br> | ||
+ | |||
+ | <math>x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\,</math><br> | ||
+ | |||
+ | <math>\omega_0\,</math> value as the base frequency is 2 | ||
+ | |||
+ | <math>x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\,</math><br> |
Revision as of 18:32, 26 September 2008
Part A
$ y(t) = K x(t-a) $
if $ x(t)=e^{jwt} $ was inputed to the system
$ y(t) = K e^{jw(t-a)} $
$ = K e^{-jwa}e^{jwt} $
eigen function is $ e^{-jwa} $
$ H(jw)=Ke^{-jwa} $
$ h(t)=K\delta (t-a) $
$ H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as} $
Part B
I REFERRED TO RONY WIJAYA'S ANSWER
Signal defined in Question 1:
$ x(t) = cos(3\pi t+\pi) \! $
$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $
$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $
From Question 1:
$ x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\, $
With this expression we can conclude:
$ a_1 = 3\, $
$ a_{-1} = 3\, $
$ a_2 = 4\, $
$ a_{-2} = -4\, $
$ x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\, $
$ x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\, $
$ \omega_0\, $ value as the base frequency is 2
$ x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\, $