(New page: <math>x[n] = 7sin(7\pi n + \frac{\pi}{8})</math> <math>x[n] = \frac{7}{2j}(e^{j(7\pi n + \frac{\pi}{8})} - e^{-j(7\pi n + \frac{\pi}{8})})</math> <math>x[n] = \frac{7}{2j}e^{j3\pi n}e^{j...)
(No difference)

Revision as of 11:39, 25 September 2008

$ x[n] = 7sin(7\pi n + \frac{\pi}{8}) $

$ x[n] = \frac{7}{2j}(e^{j(7\pi n + \frac{\pi}{8})} - e^{-j(7\pi n + \frac{\pi}{8})}) $

$ x[n] = \frac{7}{2j}e^{j3\pi n}e^{j\frac{\pi}{8}} - \frac{7}{2j}e^{-j3\pi n}e^{-j\frac{\pi}{8}} $


Using the fact that $ e^{j\frac{\pi}{8}} $ and $ e^{-j\frac{\pi}{8}} $ are equal to j...

$ x[n] = \frac{7}{2}e^{j3\pi n} + \frac{7}{2}e^{-j3\pi n} $


Also, $ e^{j3\pi n} = e^{j\pi n} \rightarrow e^{-j3\pi n} \times 1 = e^{-j3\pi n}e^{2j2\pi n} = e^{j\pi n} $

$ x[n] = \frac{7}{2}e^{j\pi n} + \frac{7}{2}e^{j\pi n} = 7e^{j\pi n} $

$ x[n] = a_0e^{0j\omega_0 n} + a_1e^{1j\omega_0 n} $

$ /rightarrow k= 7, a_1 = 7, a_0 = 0 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett