(The signal)
(The signal)
Line 14: Line 14:
  
 
The value of this is <math>\frac{2\pi}{2\pi}\!</math>, which coincidently, by no planning of mine, turns out to be <math>1\!</math>.
 
The value of this is <math>\frac{2\pi}{2\pi}\!</math>, which coincidently, by no planning of mine, turns out to be <math>1\!</math>.
 +
 +
 +
==Solution==
 +
 +
 +
We know that the equation for signal coefficients is as follows:
 +
 +
 +
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
 +
 +
 +
And the equation for fourier series of a function is as follows:
 +
 +
 +
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
 +
 +
 +
We first put our signal into the first equation, and we get this monster:
 +
 +
 +
<math>a_0=\frac{1}{2\pi}\int_0^{2\pi}[4cos(2t) + (3j)sin(3t)]e^{0}dt</math>

Revision as of 17:39, 24 September 2008

The signal

The signal I chose to use is as follows:


$ x(t) = 4cos(2t) + (3j)sin(3t)\! $


The fundamental period, denoted as $ T\! $, of this signal is $ 2\pi\! $. The fundamental frequency, denoted $ \omega_0\! $, is defined as:


$ \omega_0 = \frac{T}{2\pi}\! $


The value of this is $ \frac{2\pi}{2\pi}\! $, which coincidently, by no planning of mine, turns out to be $ 1\! $.


Solution

We know that the equation for signal coefficients is as follows:


$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.


And the equation for fourier series of a function is as follows:


$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $


We first put our signal into the first equation, and we get this monster:


$ a_0=\frac{1}{2\pi}\int_0^{2\pi}[4cos(2t) + (3j)sin(3t)]e^{0}dt $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang