(New page: <math>int/</math>)
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>int/</math>
+
'''Memory less system'''
 +
 
 +
A system is memoryless if for any <math>t\in \mathbb{R}</math> only on the input at <math>t_0,</math>
 +
 
 +
Eg:
 +
 
 +
<pre> Y(t) = X(t) + X(t-1){ memoryless}
 +
Y(t) = X(t)+X(t-1)  { with memory}.</pre>
 +
 
 +
 
 +
'''Invertible systems'''
 +
 
 +
A system is invertible if distinct inputs yield distinct outputs.
 +
 
 +
Eg:
 +
<pre> Y(t) = 2x(t) + 3.</pre>
 +
 
 +
'''Causalty'''
 +
 
 +
A system is called causal if output at any given time only depends on input in present and past(not future)ie; for any time <math>t_0,</math>
 +
 
 +
Y(<math>t_0,</math>) only depends on X(t) with t<<math>t_0,</math>
 +
 
 +
Y(t) = X(t+1) {non causal}
 +
 
 +
Y(t) = X(t-1){causal}

Latest revision as of 08:57, 18 September 2008

Memory less system

A system is memoryless if for any $ t\in \mathbb{R} $ only on the input at $ t_0, $

Eg:

 Y(t) = X(t) + X(t-1){ memoryless}
 Y(t) = X(t)+X(t-1)  { with memory}.


Invertible systems

A system is invertible if distinct inputs yield distinct outputs.

Eg:

 Y(t) = 2x(t) + 3.

Causalty

A system is called causal if output at any given time only depends on input in present and past(not future)ie; for any time $ t_0, $

Y($ t_0, $) only depends on X(t) with t<$ t_0, $

Y(t) = X(t+1) {non causal}

Y(t) = X(t-1){causal}

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett