(New page: Here we see that when the system input is <math> X_k[n]=\delta[n-k]\,</math> we get the following system output <math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math> Hence if the input is ...)
 
Line 5: Line 5:
 
Hence if the input is  
 
Hence if the input is  
 
*<math> X_k[n-n0]=\delta[n-n0-k]\,</math>  then the output shall be as follows  
 
*<math> X_k[n-n0]=\delta[n-n0-k]\,</math>  then the output shall be as follows  
*<math> Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \,</math>
+
*<math> Y_k[x[n-n0]]=(k+1)^2 \delta[n-n0-(k+1)] \,</math>......................................(1)
 +
 
 +
Now suppose we pass the signal through the system first and then delay it
 +
Therefore for input <math> X_k[n]=\delta[n-k]\,</math> we get
 +
<math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>
 +
 
 +
Now, we delay Y_k[n] by n0
 +
*Therefore the output will be <math> Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \,</math>..............(2)
 +
 
 +
'''From (1) and (2) it is clear that it is time invariant.'''

Revision as of 13:07, 12 September 2008

Here we see that when the system input is $ X_k[n]=\delta[n-k]\, $ we get the following system output $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $

Hence if the input is

  • $ X_k[n-n0]=\delta[n-n0-k]\, $ then the output shall be as follows
  • $ Y_k[x[n-n0]]=(k+1)^2 \delta[n-n0-(k+1)] \, $......................................(1)

Now suppose we pass the signal through the system first and then delay it Therefore for input $ X_k[n]=\delta[n-k]\, $ we get $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $

Now, we delay Y_k[n] by n0

  • Therefore the output will be $ Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \, $..............(2)

From (1) and (2) it is clear that it is time invariant.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang