(Part B)
(Part B: Find input given output)
Line 32: Line 32:
  
 
== Part B: Find input given output ==
 
== Part B: Find input given output ==
LAWL
+
 
 +
The given output is:
 +
 
 +
<math>\,Y[n]=u[n-1]\,</math>
 +
 
 +
 
 +
This can be re-written as:
 +
 
 +
<math>\,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\,</math>
 +
 
 +
<math>\,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\,</math>
 +
 
 +
<math>\,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\,</math>
 +
 
 +
 
 +
Because the system is assumed to be linear, we can write the input as

Revision as of 21:02, 11 September 2008

Part A: Can the system be time invariant?

The system cannot be time invariant.


For instance, the input

$ \,X_0[n]=\delta [n]\, $

yields the output

$ \,Y_0[n]=\delta [n-1]\, $

Thus,

$ \,Y_0[n-1]=\delta [n-2]\, $


However, the input

$ \,X_0[n-1]=\delta [n-1]=X_1[n]\, $

yields the output

$ \,Y_1[n]=4\delta[n-2]\, $


Since these two are not equal

$ \,\delta [n-2]\not= 4\delta[n-2]\, $

the system is time variant (by not fitting the definition of time invariance).

Part B: Find input given output

The given output is:

$ \,Y[n]=u[n-1]\, $


This can be re-written as:

$ \,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\, $

$ \,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\, $

$ \,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\, $


Because the system is assumed to be linear, we can write the input as

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang