(Time-variant System)
(Time-variant System)
 
(3 intermediate revisions by the same user not shown)
Line 30: Line 30:
 
==Time-variant System==
 
==Time-variant System==
  
An example for a time-variant system would be <math>y(t) = 2tx(t)</math>
+
An example for a time-variant system would be <math>x(t) \rightarrow system \rightarrow y(t) = 2tx(t)</math>
 +
 
 +
Proof:
 +
 
 +
<math>x(t) \rightarrow system \rightarrow 2tx(t) \rightarrow time-delay \rightarrow 2(t-t_0)x(t-t_0)</math>
 +
 
 +
 
 +
<math>x(t) \rightarrow time-delay \rightarrow x(t-t_0) \rightarrow system \rightarrow 2tx(t-t_0)</math>
 +
 
 +
 
 +
Since the output is not similar the system is time-variant.

Latest revision as of 16:20, 11 September 2008

Time Invariance

A time-invariant system is a system in which the output gets time-shifted when the input is time-shifted.


$ x(t - t_0) \rightarrow system \rightarrow y(t - t_0) $


Time-invariant System

An example of a time-invariant system would be the system I used for my linearity problem. Therefore the system is a linear, time-invariant system.


$ x(t) \rightarrow system \rightarrow y(t) = 2x(t) $


Proof:

$ x(t) \rightarrow system \rightarrow 2x(t) \rightarrow time-delay \rightarrow 2x(t-t_0) $


$ x(t) \rightarrow time-delay \rightarrow x(t-t_0) \rightarrow system \rightarrow 2x(t-t_0) $


Since the output is the same for both configurations the system is time-invariant.


Time-variant System

An example for a time-variant system would be $ x(t) \rightarrow system \rightarrow y(t) = 2tx(t) $

Proof:

$ x(t) \rightarrow system \rightarrow 2tx(t) \rightarrow time-delay \rightarrow 2(t-t_0)x(t-t_0) $


$ x(t) \rightarrow time-delay \rightarrow x(t-t_0) \rightarrow system \rightarrow 2tx(t-t_0) $


Since the output is not similar the system is time-variant.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison