(11 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
 
 
         P(A=1) = p P(B=1) = p
 
         P(A=1) = p P(B=1) = p
P(A=0) = 1-p P(B=0) = 1-p
 
 
 
 +
        P(A=0) = 1-p P(B=0) = 1-p
 
 
         P(A=1,C=1) = P(A=1) . P(C=1) = p.P(A=1,B=0) = p^2.(1-p) (1)
+
P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p) (2)
+
         P(A=1,C=1) = P(A=1) . P(C=1) = p.{P(A=1,B=0)+P(A=0,B=1)} = 2.p^2.(1-p) (1)
 +
 +
        P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p)                 (2)
 +
       
 +
Since, (1) & (2) are not equal to each other, A & C are not independent of each other when bits are biased.
 +
 +
 
 +
                            "OR"       
 +
 
 +
        P(A=0,C=0) = P(A=0) . P(C=0) = (1-p).{P(A=1,B=1)+P(A=0,B=0)} = (p^2 + (1-p)^2).(1-p) (3)
 +
 +
        P(A=0,B=0) = P(A=1) . P(B=0) = (1-p).(1-p)                 (4)
 +
         
 +
Again, since (3) & (4) are not equal to each other, A & C are not independent of each other when bits are biased.
  
Since, (1) & (2) are not equal to each other, A & C are
+
        Hence, it is proved.
independent of each other when bits are biased.
+

Latest revision as of 15:42, 16 September 2008



       A		B		


       P(A=1) = p	P(B=1) = p
       P(A=0) = 1-p	P(B=0) = 1-p			


       P(A=1,C=1) = P(A=1) . P(C=1) = p.{P(A=1,B=0)+P(A=0,B=1)} = 2.p^2.(1-p)		(1)
       P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p)		                 		(2)
       

Since, (1) & (2) are not equal to each other, A & C are not independent of each other when bits are biased.


                            "OR"        
       P(A=0,C=0) = P(A=0) . P(C=0) = (1-p).{P(A=1,B=1)+P(A=0,B=0)} = (p^2 + (1-p)^2).(1-p)	(3)
       P(A=0,B=0) = P(A=1) . P(B=0) = (1-p).(1-p)		                 		(4)
         

Again, since (3) & (4) are not equal to each other, A & C are not independent of each other when bits are biased.

       Hence, it is proved.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett