7.9 Given that $ f \in L^1(\mathbb{R}) $ and

$ \int_{\mathbb{R}}\int_{\mathbb{R}} f(4x)f(x+y)dxdy =1 $,

calculate $ \int_{\mathbb{R}} f(x) dx $.

Since $ f \in L^1(\mathbb{R}) $ we can use Fubini:

$ \begin{align} 1 &= \int_{\mathbb{R}}\int_{\mathbb{R}} f(4x)f(x+y)dxdy\\ &= \int_{\mathbb{R}}f(4x)\left(\int_{\mathbb{R}} f(y+x)dy\right)dx\\ &= \int_{\mathbb{R}}f(4x)\left(\int_{\mathbb{R}} f(y)dy\right)dx\\ &= \left(\int_{\mathbb{R}} f(y)dy\right)\left(\int_{\mathbb{R}}f(4x)dx\right)\\ &= \left(\int_{\mathbb{R}} f(y)dy\right)\left(\int_{\mathbb{R}}f(y)\frac{1}{4}dy\right)\\ &= \frac{1}{4}\left(\int_{\mathbb{R}} f(y)dy\right)^2\\ &= \left(\frac{1}{2}\int_{\mathbb{R}} f(y)dy\right)^2\\ \end{align} $

Thus we see that $ \int_{\mathbb{R}} f(x) dx = \pm 2 $.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood