Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


$ X(w) = \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (3j + 7) $

$ x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw $

$ = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (3j + 7)] e^{jwt} dw $


$ = \frac{3j - 7}{2}\int^{\infty}_{- \infty}\delta (w -2\pi) e^{jwt} dw + \frac {3j + 7}{2}\int^{\infty}_{- \infty}\delta (w + 2\pi) e^{jwt} dw $

$ = \frac{3j - 7}{2} e^{j2\pi t} + \frac{3j + 7}{2} e^{-j2\pi t} $

$ = \frac{3j}{2} e^{j 2\pi t} - \frac{7}{2} e^{j 2\pi t} + \frac{3j}{2} e^{-j 2\pi t} + \frac{7}{2} e^{-j 2\pi t} $

$ = \frac{3j(e^{j 2\pi t} + e^{-j 2\pi t})}{2} + \frac{7(- e^{j 2\pi t} + e^{-j 2\pi t})}{2} $

$ = 3sin(2\pi) + 7cos(2\pi) $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett