Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Compute the Inverse Fourier Transform of:

$ \,\mathcal{X}(\omega)= \frac{\pi}{j} \delta (w - 2\pi) + \frac{2\pi}{j} \delta (w + 2\pi) $

$ x(t) = \frac{1}{2\pi}\int^{\infty}_{-\infty} \mathcal{X} (\omega) e^{jwt}dw $

$ x(t) = \frac{1}{2\pi} \frac{\pi}{j}\int^{\infty}_{-\infty} \delta(w-2\pi)e^{jwt} dw + \frac{1}{2\pi}\frac{2\pi}{j} \int_{-\infty}^{\infty} \delta(w+2\pi)e^{jwt} dw] $

$ x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009