Periodic Signal Properties

1. Period is equal to 2

2. $ a_k = a_{k-2}\, $

3. $ \sum^{5}_{2} x[n] = 0\, $

4. $ \sum^{5}_{2} x[n](-1)^n = 10\, $

5. Signal is Even

Signal Determination

From the first property, we can clearly say that N = 2.

$ a_0 = \frac{1}{2}\sum^{1}_{0} x[n] e^{-jn\pi 0} = \frac{1}{2}\sum^{1}_{0} x[n]\, $

Notice that according to property 3 and 2, we can shift the sum to start from 0, and decrease the total sum values as the signal is periodic, and repeat itself every $ n = 2\, $

$ \sum^{5}_{2} x[n] = \sum^{3}_{0} x[n] = \sum^{1}_{0} x[n] = 0\, $

Thus , $ a_0 = \frac{1}{2}\sum^{1}_{0} x[n] = 0\, $

$ a_1 = \frac{1}{2}\sum^{1}_{0} x[n] e^{-jn\pi 1} = \frac{1}{2}\sum^{1}_{0} x[n]e^{-jn\pi}\, $

Notice that $ e^{-j\pi}\, $ is equivilent to $ -1\, $

Thus $ a_1 = \frac{1}{2}\sum^{1}_{0} x[n] (-1)^n\, $

From property 4, we can modify the properties to make it look similar to our formula.

$ \sum^{5}_{2} x[n](-1)^n = \sum^{3}_{0} x[n](-1)^n = \sum^{1}_{0} x[n](-1)^n = 10\, $

Subtituting the formula, we can see that $ a_1 = \frac{1}{2}(10) = 5\, $

We can proceed to calculate the formula for $ x[n]\, $

$ x[n] = \sum^{1}_{k=0} a_k e^{j\pi k n} = 0 + 5e^{j\pi n} = 5(-1)^n $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett