Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


CT signal

$ x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

Coefficients

$ cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} $

$ 4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $

$ x(t) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $


$ x(t) = \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{5j2\pi t}{6}} + 2je^{\frac{-5j2\pi t}{6}} $
Then we can know the fundamental frequency is $ \frac{\pi}{3} $.

Also, we can get coefficients $ a_2 $,$ a_{-2} $,$ a_5 $, $ a_{-5} $.

$ a_2 = a_{-2} = \frac{1}{2}, a_5 = -2j, a_{-5} = 2j, a_k = 0, $where k is not 2,-2,5,-5


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva