7.9 QE 2004 August

1. (20 pts.)

A probability space $ \left(\mathcal{S},\mathcal{F},\mathcal{P}\right) $ has a sample space consisting of all pairs of positive integers: $ \mathcal{S}=\left\{ \left(k,m\right):\; k=1,2,\cdots;\; m=1,2,\cdots\right\} $ . The event space $ \mathcal{F} $ is the power set of $ \mathcal{S} $ , and the probability measure $ \mathcal{P} $ is specified by the pmf $ p\left(k,m\right)=p^{2}\left(1-p\right)^{k+m-2},\qquad p\in\left(0,1\right) $.

(a)

Find $ P\left(\left\{ \left(k,m\right):\; k\geq m\right\} \right) $ .

$ P\left(\left\{ \left(k,m\right):\; k\geq m\right\} \right)=\sum_{k=1}^{\infty}\sum_{m=1}^{k}p\left(k,m\right)=\sum_{k=1}^{\infty}\sum_{m=1}^{k}p^{2}\left(1-p\right)^{k+m-2}=\frac{p^{2}}{\left(1-p\right)^{2}}\cdot\sum_{k=1}^{\infty}\left(1-p\right)^{k}\sum_{m=1}^{k}\left(1-p\right)^{m} $$ =\frac{p^{2}}{\left(1-p\right)^{2}}\cdot\sum_{k=1}^{\infty}\left(1-p\right)^{k}\cdot\frac{\left(1-p\right)\left(1-\left(1-p\right)^{k}\right)}{1-\left(1-p\right)}=\frac{p}{1-p}\cdot\sum_{k=1}^{\infty}\left(1-p\right)^{k}\cdot\left(1-\left(1-p\right)^{k}\right) $$ =\frac{p}{1-p}\cdot\left[\sum_{k=1}^{\infty}\left(1-p\right)^{k}-\sum_{k=1}^{\infty}\left(1-p\right)^{2k}\right]=\frac{p}{1-p}\cdot\left[\frac{1-p}{1-\left(1-p\right)}-\frac{\left(1-p\right)^{2}}{1-\left(1-p\right)^{2}}\right] $$ =\frac{p}{1-p}\cdot\left[\frac{1-p}{p}-\frac{\left(1-p\right)^{2}}{p\left(2-p\right)}\right]=1-\frac{1-p}{2-p}=\frac{2-p-1+p}{2-p}=\frac{1}{2-p}. $

(b)

Find $ P\left(\left\{ \left(k,m\right):\; k+m=r\right\} \right) $ , for $ r=2,3,\cdots $ .

$ P\left(\left\{ \left(k,m\right):\; k+m=r\right\} \right)=\sum_{r=2}^{\infty}\sum_{k=1}^{r-1}p\left(k,r-k\right)=\sum_{r=2}^{\infty}\sum_{k=1}^{r-1}p^{2}\left(1-p\right)^{r-2} $$ =\frac{p^{2}}{\left(1-p\right)^{2}}\cdot\sum_{r=2}^{\infty}\left(r-1\right)\left(1-p\right)^{r}=\frac{p^{2}}{\left(1-p\right)^{2}}\cdot\sum_{r=1}^{\infty}r\left(1-p\right)^{r+1} $$ =\frac{p^{2}}{1-p}\cdot\sum_{r=1}^{\infty}r\left(1-p\right)^{r}=\frac{p^{2}}{1-p}\cdot\frac{1-p}{\left(1-\left(1-p\right)\right)^{2}}=1. $

Note

We use Taylor Series: $ \sum_{r=1}^{\infty}r\left(1-p\right)^{r}=\frac{1-p}{\left(1-\left(1-p\right)\right)^{2}} $ .

(c)

Find $ P\left(\left\{ \left(k,m\right):\; k\text{ is an odd number}\right\} \right) $ .

$ P\left(\left\{ \left(k,m\right):\; k\text{ is an odd number}\right\} \right)=1-P\left(\left\{ \left(k,m\right):\; k\text{ is an even number}\right\} \right) $$ =1-\sum_{i=1}^{\infty}\sum_{m=1}^{\infty}p\left(2i,m\right)=1-\sum_{i=1}^{\infty}\sum_{m=1}^{\infty}p^{2}\left(1-p\right)^{2i+m-2} $$ =1-\frac{p^{2}}{\left(1-p\right)^{2}}\cdot\sum_{i=1}^{\infty}\left(1-p\right)^{2i}\sum_{m=1}^{\infty}\left(1-p\right)^{m}=1-\frac{p^{2}}{\left(1-p\right)^{2}}\cdot\sum_{i=1}^{\infty}\left(1-p\right)^{2i}\cdot\frac{1-p}{1-\left(1-p\right)} $$ =1-\frac{p}{1-p}\cdot\sum_{i=1}^{\infty}\left(1-p\right)^{2i}=1-\frac{p}{1-p}\cdot\frac{\left(1-p\right)^{2}}{1-\left(1-p\right)^{2}}=1-\frac{p}{1-p}\cdot\frac{\left(1-p\right)^{2}}{p\left(2-p\right)} $$ =1-\frac{1-p}{2-p}=\frac{2-p-1+p}{2-p}=\frac{1}{2-p}. $

2. (20 pts.)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two independent identically distributed exponential random variables having mean $ \mu $ . Let $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ . Find $ f_{\mathbf{X}}\left(x|\mathbf{Z}=z\right) $ , the conditional pdf of $ \mathbf{X} $ given the event $ \left\{ \mathbf{Z}=z\right\} $ .

Note

This problem is very simlar to the example except that it deals with the exponential random variable rather than the Poisson random variable.

Solution

By using Bayes' theorem,

$ f_{\mathbf{X}}\left(x|\mathbf{Z}=z\right)=\frac{f_{\mathbf{XZ}}\left(x,z\right)}{f_{\mathbf{Z}}\left(z\right)}=\frac{f_{\mathbf{Z}}\left(z|\mathbf{X}=x\right)f_{\mathbf{X}}\left(x\right)}{f_{\mathbf{Z}}\left(z\right)}=\frac{f_{\mathbf{Y}}\left(z-x\right)f_{\mathbf{X}}\left(x\right)}{f_{\mathbf{Z}}\left(z\right)}=? $

Acording to the definition of the exponential distribution, $ f_{\mathbf{X}}\left(x\right)=\frac{1}{\mu}e^{-\frac{x}{\mu}}\text{ and }f_{\mathbf{Y}}\left(y\right)=\frac{1}{\mu}e^{-\frac{y}{\mu}}. $

$ \Phi_{\mathbf{X}}\left(\omega\right)=\Phi_{\mathbf{Y}}\left(\omega\right)=\frac{1}{1-i\mu\omega}. $

$ \Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\left(\mathbf{X}+\mathbf{Y}\right)}\right]=E\left[e^{i\omega\mathbf{X}}\right]E\left[e^{i\omega\mathbf{Y}}\right]=\Phi_{\mathbf{X}}\left(\omega\right)\Phi_{\mathbf{Y}}\left(\omega\right)=\frac{1}{1-i\mu\omega}\cdot\frac{1}{1-i\mu\omega}=? $

3. (25 pts.)

Let $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n} $ be independent identically distributed (i.i.d. ) random variables uniformaly distributed over the interval $ \left[0,1\right] $ .

(a)

Find the probability density function of $ \mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\} $ .

ref.

This problem is almost identical to the example.

Solution

$ F_{\mathbf{Y}}(y)=P\left(\left\{ \mathbf{Y}\leq y\right\} \right)=P\left(\left\{ \max\left\{ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}\right\} \leq y\right\} \right)=P\left(\left\{ \mathbf{X}_{1}\leq y\right\} \cap\left\{ \mathbf{X}_{2}\leq y\right\} \cap\cdots\cap\left\{ \mathbf{X}_{n}\leq y\right\} \right) $$ =P\left(\left\{ \mathbf{X}_{1}\leq y\right\} \right)P\left(\left\{ \mathbf{X}_{2}\leq y\right\} \right)\cdots P\left(\left\{ \mathbf{X}_{n}\leq y\right\} \right)=\left(F_{\mathbf{X}}\left(y\right)\right)^{n} $

where $ f_{\mathbf{X}}(x)=\mathbf{1}_{\left[0,1\right]}(x) $ and $ F_{\mathbf{X}}\left(x\right)=\left\{ \begin{array}{ll} 0 & \quad,\; x<0\\ x & \quad,\;0\leq x<1\\ 1 & \quad,\; x\geq1. \end{array}\right. $

$ f_{\mathbf{Y}}\left(y\right)=\frac{dF_{\mathbf{Y}}\left(y\right)}{dy}=n\left[F_{\mathbf{X}}\left(y\right)\right]^{n-1}\cdot f_{\mathbf{X}}\left(y\right)=n\cdot y^{n-1}\cdot\mathbf{1}_{\left[0,1\right]}(y). $

(b)

Find the probability density function of $ \mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\} $ .

Solution

$ F_{\mathbf{Z}}(z)=P\left(\left\{ \mathbf{Z}\leq z\right\} \right)=1-P\left(\left\{ \mathbf{Z}>z\right\} \right)=1-P\left(\left\{ \min\left\{ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}\right\} >z\right\} \right) $$ =1-P\left(\left\{ \mathbf{X}_{1}>z\right\} \cap\left\{ \mathbf{X}_{2}>z\right\} \cap\cdots\cap\left\{ \mathbf{X}_{n}>z\right\} \right)=1-\left(1-F_{\mathbf{X}}(z)\right)^{n}. $

$ f_{\mathbf{Z}}(z)=\frac{dF_{\mathbf{Z}}(z)}{dz}=n\left(1-F_{\mathbf{X}}(z)\right)^{n-1}\cdot f_{\mathbf{X}}(z)=n\left(1-z\right)^{n-1}\cdot\mathbf{1}_{\left[0,1\right]}\left(z\right). $

4. (35 pts.)

Assume that $ \mathbf{X}\left(t\right) $ is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\frac{N_{0}}{2}\delta\left(t_{1}-t_{2}\right). $ Let $ \mathbf{Y}\left(t\right) $ be a new random process defined as the output of a linear time-invariant system with impulse response $ h\left(t\right)=\frac{1}{T}e^{-t/T}\cdot u\left(t\right), $ where $ u\left(t\right) $ is the unit step function and $ T>0 $ .

(a)

What is the mean of $ \mathbf{Y\left(t\right)} $ ?

$ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}h\left(\tau\right)\mathbf{X}\left(t-\tau\right)d\tau\right]=\int_{-\infty}^{\infty}h\left(\tau\right)E\left[\mathbf{X}\left(t-\tau\right)\right]d\tau=\int_{-\infty}^{\infty}h\left(\tau\right)\cdot0d\tau=0. $

(b)

What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?

$ S_{\mathbf{XX}}\left(\omega\right)=\int_{-\infty}^{\infty}\frac{N_{0}}{2}\delta\left(\tau\right)e^{-i\omega\tau}d\tau=\frac{N_{0}}{2}. $

Let $ \alpha=\frac{1}{T} $ .

$ H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt=\int_{0}^{\infty}\alpha e^{-\alpha t}\cdot e^{-i\omega t}dt=\alpha\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\alpha\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)}\biggl|_{0}^{\infty}=\frac{\alpha}{\alpha+i\omega}. $

$ S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}=S_{\mathbf{XX}}\left(\omega\right)H\left(\omega\right)H^{*}\left(\omega\right)=\frac{N_{0}}{2}\cdot\frac{\alpha}{\alpha+i\omega}\cdot\frac{\alpha}{\alpha-i\omega}=\frac{\alpha^{2}N_{0}}{2\left(\alpha^{2}+\omega^{2}\right)}. $

$ S_{\mathbf{YY}}\left(\omega\right)=\frac{\alpha^{2}N_{0}}{2\left(\alpha^{2}+\omega^{2}\right)}=\left(\frac{\alpha N_{0}}{4}\right)\frac{2\alpha}{\alpha^{2}+\omega^{2}}\leftrightarrow\left(\frac{\alpha N_{0}}{4}\right)e^{-\alpha\left|\tau\right|}=R_{\mathbf{YY}}\left(\tau\right). $

$ \because e^{-\alpha\left|\tau\right|}\leftrightarrow\frac{2\alpha}{\alpha^{2}+\omega^{2}}\text{ (on the table given)}. $

$ \therefore R_{\mathbf{YY}}\left(\tau\right)=\left(\frac{\alpha N_{0}}{4}\right)e^{-\alpha\left|\tau\right|}=\left(\frac{N_{0}}{4T}\right)e^{-\frac{\left|\tau\right|}{T}}. $

(c)

Write an expression for the $ n $ -th order characteristic function of $ \mathbf{Y}\left(t\right) $ sampled at time $ t_{1},t_{2},\cdots,t_{n} $ . Simplify as much as possible.

(d)

Write an expression for the second-order pdf $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ . simplify as much as possible.

$ \mathbf{Y}\left(t\right) $ is a WSS Gaussian random process with $ E\left[\mathbf{Y}\left(t\right)\right]=0 , \sigma_{\mathbf{Y}\left(t\right)}^{2}=R_{\mathbf{YY}}\left(0\right)=\frac{N_{0}}{4} $ .

$ r_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}=r\left(t_{1}-t_{2}\right)=\frac{C_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{\sqrt{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}}=\frac{R_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{R_{\mathbf{YY}}\left(0\right)}=e^{-\alpha\left|t_{1}-t_{2}\right|}. $

$ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{y_{1}^{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}}-\frac{2ry_{1}y_{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}}+\frac{y_{2}^{2}}{\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}\right]\right\} $$ =\frac{1}{2\pi\frac{N_{0}}{4}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-1}{2\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[\frac{y_{1}^{2}}{N_{0}/4}-\frac{2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}}{N_{0}/4}+\frac{y_{2}^{2}}{N_{0}/4}\right]\right\} $$ =\frac{2}{\pi N_{0}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-2}{N_{0}\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[y_{1}^{2}-2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}+y_{2}^{2}\right]\right\} $ .

(e)

Find the minium mean-square estimate of $ \mathbf{Y}\left(t_{2}\right) $ given that $ \mathbf{Y}\left(t_{1}\right)=y_{1} $ . Simplify your answer as much as possible.

$ \widehat{y_{2}}_{MMS}\left(y_{1}\right)=E\left[\mathbf{Y}\left(t_{2}\right)|\mathbf{Y}\left(t_{1}\right)=y_{1}\right]=\int_{-\infty}^{\infty}y_{2}\cdot f_{\mathbf{Y}\left(t_{2}\right)}\left(y_{2}|\mathbf{Y}\left(t_{1}\right)=y_{1}\right)dy_{2} $

$ \text{where }f_{\mathbf{Y}\left(t_{2}\right)}\left(y_{2}|\mathbf{Y}\left(t_{1}\right)=y_{1}\right)=\frac{f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1,}y_{2}\right)}{f_{\mathbf{Y}\left(t_{1}\right)}\left(y_{1}\right)}. $


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett