Back to all ECE 600 notes

The Comer Lectures on Random Variables and Signals

Slectures by Maliha Hossain


Topic 17: Random Vectors



Random Vectors

Definition $ \qquad $ let X$ _1 $,..., X$ _n $ be n random variables on (S,F,P). The column vector X is given by

$ \underline{X} = [X_1,...,X_n]^T $

is a random vector (RV) on (S,F,P).

Fig 1: The mapping from the sample space to the event space under X$ _j $.


We can view X($ \omega $) as a point in R$ ^n $$ \omega $S.
Much of what we need to work with random vectors we can get by a simple extension of what we have developed for n = 2.

For example:

  • The cumulative distribution function of X is
$ F_{\underline X}(\underline x) = P(X_1\leq x_1,...,X_n\leq x_n)\;\;\forall\underline x = [x_1,...,x_n]^T\in\mathbb R^n $
and the probability density function of X is
$ f_{\underline X}(\underline x) = \frac{\partial^nF_{\underline X}(\underline x)}{\partial x_1...\partial x_n} $
  • For any D ⊂ R$ ^n $ such that D ∈ B(R$ ^2 $),
$ P(\underline X \in D) = \int_D f_{\underline X}(\underline x)d\underline x $
Note that B(R$ ^n $) is the $ \sigma $-field generated by the collection of all open n-dimensional hypercubes (more formally, k-cells) in R$ ^n $.
  • The formula for the joint pdf of two functions of two random variables can be extended to find the pdf of n functions of n random variables (see Papoulis).
  • The random variables X$ _1 $,..., X$ _n $ are statistically independent if the events {X$ _1 $ ∈ A$ _1 $},..., {X$ _n $ ∈ A$ _n $} are independent ∀A$ _1 $, ..., A$ _n $ ∈ B(R). An equivalent definition is that X$ _1 $,..., X$ _n $ are independent if
$ f_{\underline X}(\underline x)=\prod_{i=1}^nf_{X_i}(x_i)\;\;\forall\underline x\in\mathbb R^n $



Random Vectors: Moments

We will spend some time on moments of random vectors. We will be especially interested in pairwise covariances/correlations.
The correlation between X$ _j $ and X$ _k $ is denoted R$ _{jk} $, so

$ R_{jk} \equiv E[X_jX_k] $

and the covariance is C$ _{jk} $:

$ C_{jk}\equiv E[(X_j-\mu_{X_j})(X_k-\mu_{X_k})] $

For a random vector X, we define the correlation matrix RX as

$ R_{\underline X}=\begin{bmatrix} R_{11} & \cdots & R_{1n} \\ \vdots & & \vdots \\ R_{n1} & \cdots & R_{nn} \end{bmatrix} $

and the covariance matrix CX as

$ C_{\underline X}=\begin{bmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & & \vdots \\ C_{n1} & \cdots & C_{nn} \end{bmatrix} $

The mean vector $ \mu $X is

$ \mu_{\underline X}=[\overline X_1,\cdots,\overline X_n]^T $

Note that the correlation matrix and the covariance matrix can be written as

$ \begin{align} R_{\underline X}&=E[\underline X\underline X^T] \\ C_{\underline X}&=E[(\underline X-\mu_{\underline X})(\underline X-\mu_{\underline X})^T] \end{align} $

Note that $ \mu $X, RX and CX are the moments we most commonly use for the random vectors.

We need to discuss an important property of RX, but first, a definition from Linear Algebra.

Definition $ \qquad $ An n × m matrix B with b$ _{ij} $ as its i,j$ ^{th} $ entry is non-negative definite (NND) (or positive semidefinite) if

$ \sum_{i=1}^n\sum_{j=1}^n x_i x_j b_{ij} \geq 0 $

for all real vectors [x$ _1 $,...,x$ _n $] ∈ R$ ^n $.

That is to say that for any real vector x, the product x$ ^T $Ax, where A is a real matrix, is non negative.

Theorem $ \qquad $ For any random vector X, RX is NND.

Proof: $ \qquad $ let a be an arbitrary real vector in R$ ^n $, and let

$ Y = \underline a^T\underline X = \underline X^T\underline a $

be a scalar random variable. Then

$ \begin{align}0\leq E[Y^2]&=E[\underline a^T\underline X\underline X^T\underline a] \\ &=\underline a^TE[\underline X\underline X^T]\underline a \\ &=\underline a^TR_{\underline X}\underline a \end{align} $

So

$ 0\leq \underline a^TR_{\underline X}\underline a = \sum_{i=1}^n\sum_{j=1}^na_ia_jR_{ij} $

and thus, RX is NND

Note: CX is also NND.



Characteristic Functions of Random Vectors

Definition $ \qquad $ let X be a random vector on (S,F,P). Then the characteristic function of X is

$ \Phi_{\underline X}(\underline\Omega)=E\left[e^{i\sum_{j=1}^n\omega_jX_j}\right] $

where

$ \underline\Omega = [\omega_1,...,\omega_n]^T \in \mathbb R^n $

The characteristic function ΦX is extremely useful for finding pdfs of sums of random variables.
Let

$ Z=\sum_{j=1}^nX_j $

Then

$ \Phi_Z(\omega)=E\left[e^{i\omega\sum_{j=1}^nX_j}\right] = \Phi_{\underline X}(\omega,...,\omega) $

If X$ _1 $,..., X$ _n $ are independent, then

$ \Phi_Z(\omega)=\prod_{j=1}^n\Phi_{X_j}(\omega) $

If, in addition, X$ _1 $,..., X$ _n $ are identically distributed with common characteristic function Φ$ _X $, then

$ \Phi_Z(\omega) = (\Phi_X(\omega))^n \ $



Gaussian Random Vectors

Definition $ \qquad $ Let X be a random vector on (S,F,P). Then X is Gaussian and X$ _1 $,..., X$ _n $ are said to be jointly Gaussian iff

$ Z=a_0+\sum_{j=1}^na_jX_j $

is a Gaussian random variable ∀[a$ _0 $,..., a$ _n $] ∈ R$ ^{n+1} $.

Now we will show that the characteristic function of a Gaussian random vector X is

$ \Phi_{\underline X}(\underline\Omega) = e^{i\underline\Omega^T\mu_{\underline X}-\frac{1}{2}\underline\Omega^TC_{\underline X}\underline\Omega^T} $

where $ \mu $X is the mean vector of X and CX is the covariance matrix.

Proof $ \qquad $ Let

$ Z = \sum_{j=1}^n\omega_jX_j $

for

$ \underline\Omega \in \mathbb R^n $


Then Z is a Gaussian random variable since X is Gaussian. So

$ \Phi_Z(\omega)=e^{i\omega\mu_Z}e^{-\frac{1}{2}\omega^2\sigma_Z^2} $

where

$ \begin{align} \mu_Z&=E\left[\sum_{j=1}^n\omega_jX_j\right] \\ &=\sum_{j=1}^n\omega_j\mu_{X_j} \\ &=\underline\Omega^T\mu_{\underline X} \end{align} $

and

$ \begin{align} \sigma_Z^2 &= \mbox{Var}\left(\sum_{j=1}^n\omega_jX_j\right) \\ &= \sum_{j=1}^n\sum_{k=1}^n\sigma_{jk}\omega_j\omega_k \\ &=\underline\Omega^TC_{\underline X}\underline\Omega \end{align} $

where

$ \sigma_{jk}^2 = E[(X_j-\mu_{X_j})(X_k-\mu_{X_k})] $

and CX is the covariance matrix of X.

Now

$ \begin{align} \Phi_{\underline X}(\omega)&= E\left[e^{i\sum_{j=i}^n\omega_jX_j}\right] \\ &= \Phi_Z(\omega) \end{align} $

Plugging the expressions for $ \mu_Z $ and $ \sigma_Z $$ ^2 $ into Φ$ _Z $ gives

$ \Phi_{\underline X}(\omega) =e^{i\underline\Omega^T\mu_{\underline X}}e^{-\frac{1}{2}\underline\Omega^TC_{\underline X}\underline\Omega} $

Note that we can use the equation

$ f_{\underline X}(\underline x) = \frac{1}{(2\pi)^n}\int_{\mathbb R^n}\Phi_{\underline X}(\underline\Omega)e^{-i\underline\Omega^T\underline x}d\underline\Omega $
to show that if X is Gaussian, then 
$ f_{\underline X}(\underline x) = \frac{1}{\sqrt{(2\pi)^n|C_{\underline X}|}}e^{-\frac{1}{2}(\underline X-\mu_{\underline X})^TC_{\underline X}^{-1}(\underline X-\mu_{\underline X})} $

$ \forall \underline x\in\mathbb R^n $

Note that if X$ _1 $,..., X$ _n $ are pairwise uncorrelated, then CX is the covariance matrix of X is diagonal and

$ f_{\underline X}(\underline x) = \frac{e^{-\frac{1}{2}\sum_{j=1}^n\frac{x_j^2}{\sigma_j^2}}}{\sqrt{(2\pi)^n\prod_{j=1}^n\sigma_j^2}} $

Then, we can find the joint characteristic function and the joint pdf of the jointly Gaussian random variables X and Y using the forms for a Gaussian random vector with n = 2, X$ _! $ = X and X$ _2 $ = Y.



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn