Solution to Q1 of Week 11 Quiz Pool


The transfer function of the first and second systems are

$ H_1(z)=1-z^{-1}\,\! $
$ H_2(z)=\frac{1}{1-\frac{1}{2}z^{-1}} $

Then, the transfer function of the combined system, $ (T_1+T_2)[x[n]] $ is

$ \begin{align}H(z)=H_1(z)+H_2(z)&=1-z^{-1}+\frac{1}{1-\frac{1}{2}z^{-1}} \\ &=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}}\end{align} $

Thus, the impulse response $ h[n] $ of the combined system is (if we assume 'casual'),

$ h[n]=\delta[n]-\delta[n-1]+(0.5)^n u[n]\,\! $

And the difference equation for the combined system is

$ \begin{align}&H(z)=\frac{Y(z)}{X(z)}=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}} \\ &\Rightarrow Y(z)(1-\frac{1}{2}z^{-1})=X(z)(2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}) \\ &\Rightarrow y[n]-\frac{1}{2}y[n-1]=2x[n]-\frac{3}{2}x[n-1]+\frac{1}{2}x[n-2] \end{align} $



Back to Lab Week 11 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood