Do we have to prove G is either cyclic or non-cyclic to find out whether it is Abelian?

I believe the examples on p178 help with this problem


You need only show a counterexample to the claim: "Given a normal Abelian subgroup $ \scriptstyle H $ of $ \scriptstyle G $ such that $ \scriptstyle G/H $ is Abelian, $ \scriptstyle G $ must also be Abelian." The book cites $ \scriptstyle D_3 $ as such a counterexample.

$ \scriptstyle D_3 $ has the following 6 elements:
$ \scriptstyle R_0\,\,:\,\,ABC\to ABC\,\,\,\,R_{120}\,\,:\,\,ABC\to CAB\,\,\,\,R_{240}\,\,:\,\,ABC\to BCA $
$ \scriptstyle F_1\,\,:\,\,ABC\to CBA\,\,\,\,F_2\,\,:\,\,ABC\to BAC\,\,\,\,F_3\,\,:\,\,ABC\to ACB $

Its Cayley table is:

$ \textstyle D_3 $   $ \textstyle R_0 $ $ \textstyle R_{120} $ $ \textstyle R_{240} $ $ \textstyle F_1 $ $ \textstyle F_2 $ $ \textstyle F_3 $
$ \textstyle R_0 $ $ \scriptstyle R_0 $ $ \scriptstyle R_{120} $ $ \scriptstyle R_{240} $ $ \scriptstyle F_1 $ $ \scriptstyle F_2 $ $ \scriptstyle F_3 $
$ \textstyle R_{120} $ $ \scriptstyle R_{120} $ $ \scriptstyle R_{240} $ $ \scriptstyle R_0 $ $ \scriptstyle F_2 $ $ \scriptstyle F_3 $ $ \scriptstyle F_1 $
$ \textstyle R_{240} $ $ \scriptstyle R_{240} $ $ \scriptstyle R_0 $ $ \scriptstyle R_{120} $ $ \scriptstyle F_3 $ $ \scriptstyle F_1 $ $ \scriptstyle F_2 $
$ \textstyle F_1 $ $ \scriptstyle F_1 $ $ \scriptstyle F_3 $ $ \scriptstyle F_2 $ $ \scriptstyle R_0 $ $ \scriptstyle R_{240} $ $ \scriptstyle R_{120} $
$ \textstyle F_2 $ $ \scriptstyle F_2 $ $ \scriptstyle F_1 $ $ \scriptstyle F_3 $ $ \scriptstyle R_{120} $ $ \scriptstyle R_0 $ $ \scriptstyle R_{240} $
$ \textstyle F_3 $ $ \scriptstyle F_3 $ $ \scriptstyle F_2 $ $ \scriptstyle F_1 $ $ \scriptstyle R_{240} $ $ \scriptstyle R_{120} $ $ \scriptstyle R_0 $

Let $ \scriptstyle H = \{R_0,R_{120},R_{240}\} $. From the Cayley table of $ \scriptstyle D_3 $, it's clear that $ \scriptstyle H $ is Abelian. $ \scriptstyle|D_3:H|\,=\,2 $, so we know that $ \scriptstyle H\triangleleft D_3 $ (we proved this in the previous exercise). $ \scriptstyle D_3/H $ is then $ \scriptstyle \{H,F_1H\} $. The Cayley table for $ \scriptstyle D_3/H $ is:

$ \scriptstyle D_3/H $ $ \scriptstyle H $ $ \scriptstyle F_1H $
$ \scriptstyle H $ $ \scriptstyle H $ $ \scriptstyle F_1H $
$ \scriptstyle F_1H $ $ \scriptstyle F_1H $ $ \scriptstyle H $

From this, it is obvious that $ \scriptstyle D_3/H $ is also Abelian. However, $ \scriptstyle D_3 $ is not Abelian. For example, $ \scriptstyle R_{120}F_1\,\,=\,\,F_2 $, but $ \scriptstyle F_1R_{120}\,\,=\,\,F_3 $. Thus, given a normal Abelian subgroup $ \scriptstyle H $ of $ \scriptstyle G $ such that $ \scriptstyle G/H $ is Abelian, $ \scriptstyle G $ need not be Abelian as well. $ \scriptstyle \Box $

--Nick Rupley 03:04, 2 October 2008 (UTC)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett