$ x(t) =\sqrt x $

$ E_\infty = \int_{-\infty}^\infty x(t) dt $

$ E_\infty = \int_{-\infty}^\infty \sqrt x dt E_\infty = \int_{-\infty}^0 j \sqrt -x dt + \int_0^\infty \sqrt x dt $

Solving for the two parts of $ E_\inf $:

$ \int_{-\infty}^0 j \sqrt -x dt = \dfrac {0 + \infty}{2} $ and $ \int_0^\infty \sqrt t dt = \dfrac{\infty + 0}{2} $

Therefore: $ E_\infty = \infty $



Solving for $ P_\infty $

$ P_\infty = \lim_{t\to\infty} \dfrac{1}{2t} \int_{-t}^t x(\tau)d\tau $

$ P_\infty = \lim_{t\to\infty} \dfrac{1}{2t} \int_{-t}^t \sqrt \tau d\tau $

Computing the integral:

$ P_\infty = \lim_{t\to\infty} \dfrac{1}{2t} * \dfrac{t^2}{2} = \infty $


$ P_\infty = E_\infty = \infty $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett