ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 4


Solution

Since $ X(t) $ is a wide sense Gaussian Process $ \Rightarrow X(t) $ is SSS.
$ Y(t) $ is a combination of two Gaussian distribution.
$ R_{x(t)x(t+\tau)}=R_{xx}(\tau) $
Such that
$ Y(t)=c_1X(t)-c_2X(t-\tau) $ $ \sim N((c_1-c_2)\mu_x,(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau)) $
$ \Rightarrow P(Y(t)\le\gamma) =\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\dfrac{1}{2\sigma^2}(x-\mu)^2}dx =\dfrac{1}{\sigma}\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{(\dfrac{x-\mu}{\sigma})^2}{2}}dx \\ =\dfrac{1}{\sigma}\int_{-\infty}^{\dfrac{r-\mu}{\sigma}} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{z^2}{2}}dz=\dfrac{1}{\sigma}\Phi(\dfrac{r-\mu}{\sigma}) $
$ \sigma^2=c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau) $ $ \mu=(c_1-c_2)\mu_x $
$ P(Y(t)\le r)=\dfrac{1}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}\Phi(\dfrac{r-(c_1-c_2)\mu_x}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}) $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang