ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 2: Signal Processing

August 2011 Problem 2


Solution

a)
Because $ x[-n]=x[n] $ $ y[-n]=y[n] $
$ r_{xy}[l]=X[l]\ast Y^{\ast}[-l]=X[-l]\ast Y^{\ast}[l]=Y[l]\ast X^{\ast}[-l]=r_{yx}[l] $

b)
$ z[n]=x[n]+jy[n] $
$ r_{zz}[l]=(x[l]+jy[l])*(x[-l]+jy[-l])^*=x[l]*x^*[-l]+jy[l]*x^*[-l]-jx[l]*y^*[-l]+y[l]*y^*[-l]=r_{xx}[l]+r_{yy}[l] $

c)
$ x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n}) $
$ \Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l $

d)
$ Y[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}cos(\dfrac{\pi}{2}n) \Rightarrow r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $

e)
$ r_{zz}[l]=r_{xx}[l]+r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l+\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $

f)
Wan82_CS2-7.PNG


Similar Problem

2017 QE CS2 Prob3
2016 QE CS2 Prob1
2015 QE CS2 Prob3



Back to QE CS question 2, August 2011

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett