(3 intermediate revisions by the same user not shown)
Line 12: Line 12:
 
Table of (double-sided)  [[info_z-transform|Z Transform]] Pairs and Properties
 
Table of (double-sided)  [[info_z-transform|Z Transform]] Pairs and Properties
  
click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]]
+
(Used in [[ECE301]], [[ECE438]], [[ECE538]])
  
 
</center>
 
</center>
Line 30: Line 30:
 
| <math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz  \ </math>
 
| <math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz  \ </math>
 
| [[info_inverse_z-transform|(info)]]
 
| [[info_inverse_z-transform|(info)]]
 +
|-
 
|-
 
|-
 
|}
 
|}
Line 56: Line 57:
 
| <math> \frac{1}{1-z^{-1}} \ </math>
 
| <math> \frac{1}{1-z^{-1}} \ </math>
 
|
 
|
| <math> |z| > 1\ </math>
+
| <math> |z| > 1\ </math> [[Compute_z-transform_u_n_ECE301S11|(computation)]]
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
Line 142: Line 143:
 
|  
 
|  
 
| <math> |z| > r\ </math>
 
| <math> |z| > r\ </math>
 +
|-
 
|}
 
|}
  
Line 185: Line 187:
 
| <math> R\ </math>
 
| <math> R\ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" |
+
| align="right" style="padding-right: 1em;" | Modulation [[Practice_prove_modulation_property_z_transform| (proof)]]
| <math> z_{0}^{n}x[n]\ </math>
+
|  
+
| <math> X(\frac{z}{z_{0}})\ </math>
+
|
+
| <math> z_{0}R\ </math>
+
|-
+
| align="right" style="padding-right: 1em;" |
+
 
| <math> a^{n}x[n]\ </math>  
 
| <math> a^{n}x[n]\ </math>  
 
|  
 
|  
 
| <math> X(a^{-1}z)\ </math>
 
| <math> X(a^{-1}z)\ </math>
 
|
 
|
| <math> Scaled\ version\ of\ R\ </math>
+
| <math> |a_0| R </math> (Scaled version of) <math> R\ </math>  
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |
 
| align="right" style="padding-right: 1em;" |
Line 272: Line 267:
 
|
 
|
 
| <math> R\  </math>
 
| <math> R\  </math>
 +
|-
 
|}
 
|}
  
Line 277: Line 273:
 
|-
 
|-
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other  [[info_z-transform|Z Transform]] Properties
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other  [[info_z-transform|Z Transform]] Properties
 +
|-
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Initial Value Theorem  
 
| align="right" style="padding-right: 1em;" | Initial Value Theorem  
Line 283: Line 280:
  
 
----
 
----
[[ECE438|Go to Relevant Course Page: ECE 438]]
 
 
[[ECE538|Go to Relevant Course Page: ECE 538]]
 
 
[[Collective_Table_of_Formulas|Back to Collective Table]]
 
  
[[Category:Formulas]]
+
[[Collective_Table_of_Formulas|Back to Collective Table]]

Latest revision as of 08:55, 6 March 2015


Collective Table of Formulas

Table of (double-sided) Z Transform Pairs and Properties

(Used in ECE301, ECE438, ECE538)



(double-sided) Z Transform and its Inverse
(Double-side) Z Transform $ X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} \ $ (info)
Inverse Z Transform $ x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz \ $ (info)
(double-sided) Z Transform Pairs
Signal Transform Region of convergence (ROC)
Unit impulse signal $ \delta[n]\ $ $ 1\ $ All complex $ z\ $ including $ \infty $
Unit step signal $ u[n]\ $ $ \frac{1}{1-z^{-1}} \ $ $ |z| > 1\ $ (computation)
$ -u[-n-1]\ $ $ \frac{1}{1-z^{-1}} $ $ |z| < 1\ $
Shifted unit impulse signal $ \delta[n-m]\ $ $ z^{-m}\ $ $ All\ z,\ except\ $
$ 0\ (if\ m>0)\ or\ $
$ \infty \ (if\ m<0)\ $
$ \alpha^{n}u[n]\ $ $ \frac{1}{1-\alpha z^{-1}} $ $ |z| > | \alpha |\ $
$ -\alpha^{n}u[-n-1]\ $ $ \frac{1}{1-\alpha z^{-1}} $ $ |z| < | \alpha |\ $
$ n\alpha^{n}u[n]\ $ $ \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ $ |z| > | \alpha |\ $
$ -n\alpha^{n}u[-n-1]\ $ $ \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ $ |z| < | \alpha |\ $
Single-side cosine signal $ [\cos{\omega_{0}n}]u[n]\ $ $ \frac{1-[\cos{\omega_{0}}]z^{-1}}{1-[2\cos{\omega_{0}}]z^{-1}+z^{-2}} $ $ |z| > 1\ $
Single-side sine signal $ [\sin{\omega_{0}n}]u[n]\ $ $ \frac{1-[\sin{\omega_{0}}]z^{-1}}{1-[2\cos{\omega_{0}}]z^{-1}+z^{-2}} $ $ |z| > 1\ $
$ [r^{n}\cos{\omega_{0}n}]u[n]\ $ $ \frac{1-[r\cos{\omega_{0}}]z^{-1}}{1-[2r\cos{\omega_{0}}]z^{-1}+r^{2}z^{-2}} $ $ |z| > r\ $
$ [r^{n}\sin{\omega_{0}n}]u[n]\ $ $ \frac{1-[r\sin{\omega_{0}}]z^{-1}}{1-[2r\cos{\omega_{0}}]z^{-1}+r^{2}z^{-2}} $ $ |z| > r\ $
(double-sided) Z Transform Properties
Below $ x[n] $, $ x_1[n] $ and $ x_2[n] $ are DT signals with z-transforms $ X(z) $, $ X_1(Z) $, $ X_2(z) $, and region of convergence (ROC) $ R $, $ R_1 $, $ R_2 $, respectively.
Signal Z-Transform ROC
Linearity $ ax_{1}[n]+bx_{2}[n]\ $ $ aX_{1}(z)+bX_{2}[z]\ $ $ At\ least\ the\ intersection\ of\ R_{1}\ and\ R_{2}\ $
Time shifting $ x[n-n_{0}]\ $ $ z^{-n_{0}}X(z)\ $ $ R,\ except\ for\ the\ possible\ addition\ $
$ or\ deletion\ of\ the\ origin\ $
Scaling in the z-domain $ e^{j\omega_{0}n}x[n]\ $ $ X(e^{j\omega_{0}}z)\ $ $ R\ $
Modulation (proof) $ a^{n}x[n]\ $ $ X(a^{-1}z)\ $ $ |a_0| R $ (Scaled version of) $ R\ $
$ (i.e.,\ |a|R=\ the\ set\ of\ points\ {|a|z}\ for\ z\ in\ R)\ $
Time reversal $ x[-n]\ $ $ X(z^{-1})\ $ $ R^{1/k}\ (i.e.,\ the\ set\ of\ points\ z^{1/k},\ $
$ where\ z\ is\ in\ R)\ $
Time expansion $ x^{(k)}= \begin{cases} x[r], &n=rk \\ 0, &n\neq rk \end{cases} $ $ X(z^{k})\ $ $ R^{1/k}\ (i.e.,\ the\ set\ of\ points\ z^{1/k},\ $
$ where\ z\ is\ in\ R)\ $
Conjugation $ x^{*}[n]\ $ $ X^{*}(z^{*})\ $ $ R\ $
Convolution $ x_{1}[n]*x_{2}[n]\ $ $ X_{1}(z)X_{2}(z)\ $ $ At\ least\ the\ intersection\ of\ R_{1}\ and\ R_{2}\ $
First difference $ x[n]-x[n-1]\ $ $ (1-z^{-1})X(z)\ $ $ At\ least\ the\ intersection\ of\ R\ and\ |z|>0\ $
Accumulation $ \sum_{k=-\infty}^{n}x[k]\ $ $ \frac{1}{(1-z^{-1})}X(z)\ $ $ At\ least\ the\ intersection\ of\ R\ and\ |z|>1\ $
Differentiation in the z-domain $ nx[n]\ $ $ -z\frac{dX(z)}{dz}\ $ $ R\ $
Other Z Transform Properties
Initial Value Theorem $ If\ x[n]=0\ for\ n<0,\ then\ x[0]=\lim_{z\rightarrow \infty}X(z)\ $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett