Revision as of 20:34, 30 November 2020 by Sun955 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

A Review on Reparametrizing

Over the past years in math, I've seen many different methods for reparametrizing variables as a way to make a complex integral easier to deal with. Essentially we just take a function of some value and differentiate it with respect to a different variable, creating newer, simpler functions. One application of this includes u-substitution, where we let an arbitrary variable (in this case "u") represent a portion of our integral. For example, let's take this integral:

$ \int {(sin{(x)})*(cos{(x)})} dx $

To solve this, we would simply let our new variable "u" equal $ sin{(x)} $ and differentiate both sides, resulting in an equation with $ du = cos{(x)} dx $. We can then proceed to use this as a substitution for dx, changing our integral to $ \int {sin{(u)} du} $, which is much easier to compute.

While u-substitution is the clearest example of parametrization, we even see it appear in surface integrals. This concept is extremely useful, especially with complex integrals, and it plays a major role in an integration technique known as Feynman's technique.

Back to Feynman Integrals

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett