Revision as of 17:46, 26 February 2015 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Collective Table of Formulas

Indefinite Integrals with hyperbolic tangent (th x)

click here for more formulas


$ \int th ax dx=\dfrac{\ln ch ax}{a} +C $
$ \int th^{2} ax dx=x-\dfrac{th ax}{a} +C $
$ \int th^{3} ax dx=\dfrac{1}{a}\dfrac{\ln ch ax}{a}-\dfrac{th^{2} ax}{2a} +C $
$ \int\dfrac{th^{n} ax}{ch^{2} ax} dx=\dfrac{th^{n+1} ax}{(n+1)a} +C $
$ \int\dfrac{dx}{th ax ch^{2} ax} dx=\dfrac{1}{a}\ln th ax +C $
$ \int\dfrac{dx}{th ax} dx=\dfrac{1}{a}\ln sh ax +C $
$ \int x th ax dx=\dfrac{1}{a^{2}}\biggl\{\dfrac{(ax)^{3}}{3}-\dfrac{(ax)^{5}}{15}+\dfrac{2(ax)^{7}}{105}\cdots+\dfrac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_{n}(ax)^{2n+1}}{(2n+1)|}\biggl\} +C $
$ \int x th^{2} ax dx=\dfrac{x^{2}}{2}-\dfrac{x th ax}{a}+\dfrac{1}{a^{2}}\ln ch ax +C $
$ \int\dfrac{th ax}{x} dx=\biggl\{ ax-\dfrac{(ax)^{3}}{9}+\dfrac{2(ax)^{5}}{75}-\cdots+\dfrac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_{n}(ax)^{2n-1}}{(2n-1)(2n)!}\biggl\} +C $
$ \int\dfrac{dx}{p+q th ax}=\dfrac{px}{p^{2}-q^{2}}-\dfrac{q}{a(p^{2}-q^{2})}\ln(q sh ax+p ch ax) +C $
$ \int th^{n} ax dx=-\dfrac{th^{n+1} ax}{a(n-1)}+ \int th^{n-2} ax dx $
Inverse Hyperbolic Tangent ( arg th x)
$ \int\arg th\dfrac{x}{a}dx=x\arg th\dfrac{x}{a}+\dfrac{a}{2}\ln(a^{2}-x^{2}) +C $
$ \int x\arg th\dfrac{x}{a} dx=\dfrac{ax}{2}+\frac{1}{2}(x^{2}-a^{2})\arg th\dfrac{x}{a} +C $
$ \int x^{2}\arg th\dfrac{x}{a} dx=\dfrac{ax^{2}}{6}+\frac{a^{3}}{6}\ln(a^{2}-x^{2})+\dfrac{x^{3}}{3}\arg th\dfrac{x}{a} +C $
$ \int\dfrac{\arg th\dfrac{x}{a}}{x}dx=\dfrac{x}{a}+\dfrac{(\dfrac{x}{a})^{3}}{3^{2}}+\dfrac{(\dfrac{x}{a})^{5}}{5^{2}}+\cdots +C $
$ \int\dfrac{\arg th\dfrac{x}{a}}{x^{2}}dx=-\dfrac{\arg th\dfrac{x}{a}}{x}+\dfrac{1}{2a}\ln\Biggl(\dfrac{x^{2}}{a^{2}-x^{2}}\Biggl) +C $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett