Revision as of 09:40, 7 March 2011 by Cmcmican (Talk | contribs)

Table of CT Fourier series coefficients and properties

THIS PAGE IS STILL UNDER CONSTRUCTION


Some Fourier series

Function Fourier Series Coefficients
$ sin(w_0t) $ $ \frac{1}{2j}e^{jw_0t}-\frac{1}{2j}e^{-jw_0t} $ $ a_1=\frac{1}{2j}, a_{-1}=\frac{-1}{2j}, a_k=0 \mbox{ for } k \ne 1,-1 $
$ cos(w_0t) $ $ \frac{1}{2}e^{jw_0t}+\frac{1}{2}e^{-jw_0t} $ $ a_1=\frac{1}{2}, a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for } k \ne 1,-1 $
periodic square wave

$ x(t)=\begin{cases} 1, & \mbox{if }t<T_1 \\ 0, & \mbox{if }T_1<t<T/2 \end{cases} $

where T is the period and $ 2T_1 $ is the width of the pulse

$ \sum_{k=1}^N k^2 a_k e^{jk(\frac{2\pi}{T})t} $

(just the normal formula)

$ a_k = \frac{2sin(k\omega_0T_1)}{k\omega_0T_1} $

Properties of CT Fourier systems

Property Periodic Signal Fourier Series Coefficients
x(t), y(t) are periodic with period T $ a_k $ for x(t) and $ b_k $ for y(t)
Linearity $ Ax(t)+By(t) $ $ Aa_k+Bb_k $
Time Shifting $ x(t-t_0) $ $ e^{-j k \omega_0 t_0}a_k = e^{-j k \frac{2\pi}{T}t_0}a_k $
Frequency Shifting $ e^{jM\omega_0t}x(t) = e^{jM\frac{2\pi}{T}t}x(t) $ $ a_k-M $
Conjugation $ x^*(t) $ $ a^*_{(-k)} $
Time Reversal $ x(-t) $ $ a_{(-k)} $
Time scaling $ x(ct), c < 0, $ periodic with period T/c $ a_k $

Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin