(Blanked the page)
 
Line 1: Line 1:
[[Category:ECE PhD QE CNSIP 2013 Problem1.1]][[Category:ECE PhD QE CNSIP 2013 Problem1.1]][[Category:ECE PhD QE CNSIP 2013 Problem1.1]][[Category:ECE PhD QE CNSIP 2013 Problem1.1]][[Category:ECE PhD QE CNSIP 2013 Problem1.1]][[Category:ECE PhD QE CNSIP 2013 Problem1.1]]
 
  
=Solution3=
 
 
<p>
 
First, we define a Bernoulli random variable
 
</p>
 
 
<p><span class="mwe-math-fallback-source-inline tex" dir="ltr">$ X = \left\{ \begin{array}{ll}  0, &amp; the&nbsp;change&nbsp;over&nbsp;does&nbsp;not&nbsp;occur\\  1, &amp; the&nbsp;change&nbsp;over&nbsp;occurs  \end{array} \right. $</span>
 
 
</p><p>Then we can compute
 
 
</p><p><span class="mwe-math-fallback-source-inline tex" dir="ltr">$P(X = 1) = P(1-P)+(1-P)P = P-{P}^{2}+P-{P}^2=2P-2{P}^{2} $</span>
 
</p><p><span class="mwe-math-fallback-source-inline tex" dir="ltr">$P(X = 0) = P•P+(1-P)(1-P) = {P}^{2}+1-2P+{P}^2 $</span>
 
</p><p>Define Y as the number of changes occurred in n flips, there exists at most n-1 changes
 
</p><p><span class="mwe-math-fallback-source-inline tex" dir="ltr">$E(Y)=E(\sum_{i=1}^{n-1}X_i)=\sum_{i=1}^{n-1}E(X_i) $</span>
 
</p><p><span class="mwe-math-fallback-source-inline tex" dir="ltr">$E(X_i)=p(X_i=1)=p(1-p)+(1-p)p=2p(1-p) $</span>
 
</p><p><span class="mwe-math-fallback-source-inline tex" dir="ltr">$ E(Y)=2(n-1)p(1-p) $</span>.
 
</p>
 
</p>[[ ECE PhD QE CNSIP 2013 Problem1.1|Back to ECE PhD QE CNSIP 2013 Problem1.1]]
 

Latest revision as of 22:39, 22 February 2017

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett