Line 1: Line 1:
 
----
 
----
  
= Practice Question on signal modulation =
+
= Practice Question on signal modulation =
  
 
Let x(t) be a signal whose Fourier transform <math>{\mathcal X} (\omega) </math> satisfies  
 
Let x(t) be a signal whose Fourier transform <math>{\mathcal X} (\omega) </math> satisfies  
Line 33: Line 33:
 
=== Answer 2  ===
 
=== Answer 2  ===
  
a) w<sub>c</sub> &gt; w<sub>m</sub>
+
a) w<sub>c</sub> &gt; w<sub>m</sub>  
  
&nbsp;&nbsp; &nbsp;w<sub>c</sub> &gt; 1000pi
+
&nbsp;&nbsp; &nbsp;w<sub>c</sub> &gt; 1000pi  
  
b)Since y(t) = x(t) e^jw<sub>c</sub>t
+
b)Since y(t) = x(t) e^jw<sub>c</sub>t  
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;So x(t) = y(t) e^-jw<sub>c</sub>t
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;So x(t) = y(t) e^-jw<sub>c</sub>t  
  
&nbsp;&nbsp; so to demodulate multiply by e^-jw<sub>c</sub>t
+
&nbsp;&nbsp; so to demodulate multiply by e^-jw<sub>c</sub>t  
 +
 
 +
--[[User:Ssanthak|Ssanthak]] 12:39, 19 April 2011 (UTC)
  
 
=== Answer 3  ===
 
=== Answer 3  ===

Revision as of 08:39, 19 April 2011


Practice Question on signal modulation

Let x(t) be a signal whose Fourier transform $ {\mathcal X} (\omega) $ satisfies

$ {\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi . $

The signal x(t) is modulated with the complex exponential carrier

$ c(t)= e^{j \omega_c t }. $

a) What conditions should be put on ωc to insure that x(t) can be recovered from the modulated signal x(t)c(t)?

b) Assuming the condition you stated in a) are met, how can one recover x(t) from the modulated signal x(t)c(t)?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

a) ωc > 0

b) to recover x(t) from x(t)c(t), multiply x(t)c(t) by $ e^{-j \omega_c t }. $

--Cmcmican 20:56, 7 April 2011 (UTC)

Answer 2

a) wc > wm

    wc > 1000pi

b)Since y(t) = x(t) e^jwct

        So x(t) = y(t) e^-jwct

   so to demodulate multiply by e^-jwct

--Ssanthak 12:39, 19 April 2011 (UTC)

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett